基于车载IMU和地图信息融合的室内导航系统

Zhang Yushuai, Guo Jianxin, Ji Xiang, Zhu Rui
{"title":"基于车载IMU和地图信息融合的室内导航系统","authors":"Zhang Yushuai, Guo Jianxin, Ji Xiang, Zhu Rui","doi":"10.1109/icicn52636.2021.9674003","DOIUrl":null,"url":null,"abstract":"An efficient correction method for position and heading errors in foot mounted inertial measurement unit (IMU) indoor pedestrian navigation and positioning systems is presented in this paper. We propose a cascaded structured Kalman filter and non-recursive Bayesian filter for indoor localization by fusing the micro electro mechanical system (MEMS) inertial sensors and indoor map information. The lower Kalman filter adopts the zero velocity update algorithm to initially correct the solution error of inertial navigation; the upper non-recursive Bayesian filter uses indoor map information to further calibrate pedestrian position and heading by map matching. The effectiveness and accuracy of this algorithm are verified by example in a real indoor scene.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor Navigation System Based on Foot-Mounted IMU and Map Information Fusion\",\"authors\":\"Zhang Yushuai, Guo Jianxin, Ji Xiang, Zhu Rui\",\"doi\":\"10.1109/icicn52636.2021.9674003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient correction method for position and heading errors in foot mounted inertial measurement unit (IMU) indoor pedestrian navigation and positioning systems is presented in this paper. We propose a cascaded structured Kalman filter and non-recursive Bayesian filter for indoor localization by fusing the micro electro mechanical system (MEMS) inertial sensors and indoor map information. The lower Kalman filter adopts the zero velocity update algorithm to initially correct the solution error of inertial navigation; the upper non-recursive Bayesian filter uses indoor map information to further calibrate pedestrian position and heading by map matching. The effectiveness and accuracy of this algorithm are verified by example in a real indoor scene.\",\"PeriodicalId\":231379,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicn52636.2021.9674003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9674003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种针对足部惯性测量单元(IMU)室内行人导航定位系统中位置和航向误差的有效修正方法。通过融合微机电系统惯性传感器和室内地图信息,提出了一种用于室内定位的级联结构卡尔曼滤波器和非递归贝叶斯滤波器。下卡尔曼滤波器采用零速度更新算法对惯性导航的解误差进行初始修正;上部非递归贝叶斯滤波器利用室内地图信息,通过地图匹配进一步标定行人位置和方向。通过实例验证了该算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor Navigation System Based on Foot-Mounted IMU and Map Information Fusion
An efficient correction method for position and heading errors in foot mounted inertial measurement unit (IMU) indoor pedestrian navigation and positioning systems is presented in this paper. We propose a cascaded structured Kalman filter and non-recursive Bayesian filter for indoor localization by fusing the micro electro mechanical system (MEMS) inertial sensors and indoor map information. The lower Kalman filter adopts the zero velocity update algorithm to initially correct the solution error of inertial navigation; the upper non-recursive Bayesian filter uses indoor map information to further calibrate pedestrian position and heading by map matching. The effectiveness and accuracy of this algorithm are verified by example in a real indoor scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信