一种改进的混合二次粒子群优化算法

Tan Ying, Ya-Ping Yang, J. Zeng
{"title":"一种改进的混合二次粒子群优化算法","authors":"Tan Ying, Ya-Ping Yang, J. Zeng","doi":"10.1109/ISDA.2006.253745","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is swarm-based stochastic optimization originating from artificial life and evolutionary computation. The algorithm completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm. This paper improved the standard PSO's evolution equation on the foundation of analyzing standard PSO's model and its mechanisms, then presents a quadratic PSO and gives a strategy of self-adapting quadratic PSO parameters through comparing quadratic PSO with PSO and analyzing the impact that the parameters have on the performance of algorithm. Further, this paper presents a hybrid particle optimization combined their advantages on the basis of comparing quadratic PSO with PSO. The simulation illustrates the quadratic PSO improves the performance of the PSO and the self-adapting parameters strategy is better than the fixed parameters, and the hybrid PSO outperformed both standard PSO and quadratic PSO, the experimental results show that the methods are correct and efficient","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Enhanced Hybrid Quadratic Particle Swarm Optimization\",\"authors\":\"Tan Ying, Ya-Ping Yang, J. Zeng\",\"doi\":\"10.1109/ISDA.2006.253745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is swarm-based stochastic optimization originating from artificial life and evolutionary computation. The algorithm completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm. This paper improved the standard PSO's evolution equation on the foundation of analyzing standard PSO's model and its mechanisms, then presents a quadratic PSO and gives a strategy of self-adapting quadratic PSO parameters through comparing quadratic PSO with PSO and analyzing the impact that the parameters have on the performance of algorithm. Further, this paper presents a hybrid particle optimization combined their advantages on the basis of comparing quadratic PSO with PSO. The simulation illustrates the quadratic PSO improves the performance of the PSO and the self-adapting parameters strategy is better than the fixed parameters, and the hybrid PSO outperformed both standard PSO and quadratic PSO, the experimental results show that the methods are correct and efficient\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.253745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

粒子群优化(PSO)是起源于人工生命和进化计算的基于群体的随机优化方法。该算法通过遵循每个粒子的个人最优解和整个群体的全局最优值来完成优化。在分析标准粒子群算法模型及其机理的基础上,对标准粒子群算法的演化方程进行了改进,提出了一种二次粒子群算法,并通过对两种粒子群算法的比较,分析了参数对算法性能的影响,给出了自适应二次粒子群算法参数的策略。在对二次粒子群算法和粒子群算法进行比较的基础上,提出了一种结合两者优点的混合粒子优化算法。仿真结果表明,二次粒子群算法改进了粒子群算法的性能,自适应参数策略优于固定参数策略,混合粒子群算法优于标准粒子群算法和二次粒子群算法,实验结果表明该方法是正确和有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Hybrid Quadratic Particle Swarm Optimization
Particle swarm optimization (PSO) is swarm-based stochastic optimization originating from artificial life and evolutionary computation. The algorithm completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm. This paper improved the standard PSO's evolution equation on the foundation of analyzing standard PSO's model and its mechanisms, then presents a quadratic PSO and gives a strategy of self-adapting quadratic PSO parameters through comparing quadratic PSO with PSO and analyzing the impact that the parameters have on the performance of algorithm. Further, this paper presents a hybrid particle optimization combined their advantages on the basis of comparing quadratic PSO with PSO. The simulation illustrates the quadratic PSO improves the performance of the PSO and the self-adapting parameters strategy is better than the fixed parameters, and the hybrid PSO outperformed both standard PSO and quadratic PSO, the experimental results show that the methods are correct and efficient
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信