捷克语和英语的词配帧检测与选择

EVENTS@ACL Pub Date : 2014-06-01 DOI:10.3115/v1/W14-2902
Ondrej Dusek, Jan Hajic, Zdenka Uresová
{"title":"捷克语和英语的词配帧检测与选择","authors":"Ondrej Dusek, Jan Hajic, Zdenka Uresová","doi":"10.3115/v1/W14-2902","DOIUrl":null,"url":null,"abstract":"We present a supervised learning method for verbal valency frame detection and selection, i.e., a specific kind of word sense disambiguation for verbs based on subcategorization information, which amounts to detecting mentions of events in text. We use the rich dependency annotation present in the Prague Dependency Treebanks for Czech and English, taking advantage of several analysis tools (taggers, parsers) developed on these datasets previously. The frame selection is based on manually created lexicons accompanying these treebanks, namely on PDT-Vallex for Czech and EngVallex for English. The results show that verbal predicate detection is easier for Czech, but in the subsequent frame selection task, better results have been achieved for English.","PeriodicalId":392223,"journal":{"name":"EVENTS@ACL","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Verbal Valency Frame Detection and Selection in Czech and English\",\"authors\":\"Ondrej Dusek, Jan Hajic, Zdenka Uresová\",\"doi\":\"10.3115/v1/W14-2902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a supervised learning method for verbal valency frame detection and selection, i.e., a specific kind of word sense disambiguation for verbs based on subcategorization information, which amounts to detecting mentions of events in text. We use the rich dependency annotation present in the Prague Dependency Treebanks for Czech and English, taking advantage of several analysis tools (taggers, parsers) developed on these datasets previously. The frame selection is based on manually created lexicons accompanying these treebanks, namely on PDT-Vallex for Czech and EngVallex for English. The results show that verbal predicate detection is easier for Czech, but in the subsequent frame selection task, better results have been achieved for English.\",\"PeriodicalId\":392223,\"journal\":{\"name\":\"EVENTS@ACL\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVENTS@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W14-2902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVENTS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W14-2902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种监督学习的动词配价框架检测和选择方法,即一种基于子分类信息的动词词义消歧方法,即检测文本中事件的提及情况。我们使用捷克语和英语的Prague dependency treebank中提供的丰富依赖注释,利用了之前在这些数据集上开发的几个分析工具(标记器、解析器)。框架选择是基于这些树库附带的手动创建的词典,即捷克语的PDT-Vallex和英语的EngVallex。结果表明,捷克语的动词谓词检测更容易,但在后续的框架选择任务中,英语的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verbal Valency Frame Detection and Selection in Czech and English
We present a supervised learning method for verbal valency frame detection and selection, i.e., a specific kind of word sense disambiguation for verbs based on subcategorization information, which amounts to detecting mentions of events in text. We use the rich dependency annotation present in the Prague Dependency Treebanks for Czech and English, taking advantage of several analysis tools (taggers, parsers) developed on these datasets previously. The frame selection is based on manually created lexicons accompanying these treebanks, namely on PDT-Vallex for Czech and EngVallex for English. The results show that verbal predicate detection is easier for Czech, but in the subsequent frame selection task, better results have been achieved for English.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信