基于多元模型的室内位置估计磁场特征约简

C. Galván-Tejada, Juan-Pablo García-Vázquez, R. Brena
{"title":"基于多元模型的室内位置估计磁场特征约简","authors":"C. Galván-Tejada, Juan-Pablo García-Vázquez, R. Brena","doi":"10.1109/MICAI.2013.22","DOIUrl":null,"url":null,"abstract":"In the context of a magnetic field-based indoor location system, this paper proposes a feature extraction process that uses magnetic-field temporal and spectral features in order to develop a classification model of indoor places, using only a magnetometer included in popular smartphones. We initially propose 46 features, 26 derived from the spectral evolution and 20 from the temporal one, chosen because of the statistical potential to summarize the behavior of the signal. Nevertheless, in order to simplify the classification model, a genetic algorithm approach, combined with forward selection and back elimination strategies was applied. Our results show that is possible to reduce the magnetic-field signal features from 46 to only 6 features, and estimating the user's location with even better precision.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Magnetic-Field Feature Reduction for Indoor Location Estimation Applying Multivariate Models\",\"authors\":\"C. Galván-Tejada, Juan-Pablo García-Vázquez, R. Brena\",\"doi\":\"10.1109/MICAI.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of a magnetic field-based indoor location system, this paper proposes a feature extraction process that uses magnetic-field temporal and spectral features in order to develop a classification model of indoor places, using only a magnetometer included in popular smartphones. We initially propose 46 features, 26 derived from the spectral evolution and 20 from the temporal one, chosen because of the statistical potential to summarize the behavior of the signal. Nevertheless, in order to simplify the classification model, a genetic algorithm approach, combined with forward selection and back elimination strategies was applied. Our results show that is possible to reduce the magnetic-field signal features from 46 to only 6 features, and estimating the user's location with even better precision.\",\"PeriodicalId\":340039,\"journal\":{\"name\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文以基于磁场的室内定位系统为背景,提出了一种基于磁场时间和光谱特征的特征提取方法,仅使用流行智能手机中的磁力计,就可以建立室内场所的分类模型。我们最初提出了46个特征,其中26个来自频谱演化,20个来自时间演化,选择这些特征是因为统计潜力可以总结信号的行为。然而,为了简化分类模型,我们采用了一种遗传算法方法,结合正向选择和反向淘汰策略。我们的研究结果表明,可以将磁场信号特征从46个减少到只有6个,并且可以更好地估计用户的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic-Field Feature Reduction for Indoor Location Estimation Applying Multivariate Models
In the context of a magnetic field-based indoor location system, this paper proposes a feature extraction process that uses magnetic-field temporal and spectral features in order to develop a classification model of indoor places, using only a magnetometer included in popular smartphones. We initially propose 46 features, 26 derived from the spectral evolution and 20 from the temporal one, chosen because of the statistical potential to summarize the behavior of the signal. Nevertheless, in order to simplify the classification model, a genetic algorithm approach, combined with forward selection and back elimination strategies was applied. Our results show that is possible to reduce the magnetic-field signal features from 46 to only 6 features, and estimating the user's location with even better precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信