ttfv表示最优区域的快速搜索

D. Zhong
{"title":"ttfv表示最优区域的快速搜索","authors":"D. Zhong","doi":"10.1109/MMSP.2007.4412859","DOIUrl":null,"url":null,"abstract":"Visual images are often characterized by the distribution of certain key features. Taking the face image as an example, the eye, nose and mouth are often regarded as characterizing features for recognizing face image. We call these aspects structural and statistical information of visual images and aim for developing framework for the unified description of them. We extracts certain features from randomly chosen subareas, these features have good capability to represent the local texture information. We show our retrieval results over the public face database. We found that certain subareas can provide quite good retrieval results, but the thorough searching for such subareas are time-consuming. We further developed a simple fast searching method which can large simplifies the searching process, while in the same time preserve the good performance.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Searching For The Optimal Area Of TFV Representation\",\"authors\":\"D. Zhong\",\"doi\":\"10.1109/MMSP.2007.4412859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual images are often characterized by the distribution of certain key features. Taking the face image as an example, the eye, nose and mouth are often regarded as characterizing features for recognizing face image. We call these aspects structural and statistical information of visual images and aim for developing framework for the unified description of them. We extracts certain features from randomly chosen subareas, these features have good capability to represent the local texture information. We show our retrieval results over the public face database. We found that certain subareas can provide quite good retrieval results, but the thorough searching for such subareas are time-consuming. We further developed a simple fast searching method which can large simplifies the searching process, while in the same time preserve the good performance.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视觉图像通常以某些关键特征的分布为特征。以人脸图像为例,眼睛、鼻子和嘴巴通常被视为人脸图像识别的特征特征。我们将这些方面称为视觉图像的结构信息和统计信息,并旨在建立统一描述它们的框架。我们从随机选择的子区域中提取一定的特征,这些特征具有很好的表示局部纹理信息的能力。我们在公共人脸数据库上展示了我们的检索结果。我们发现某些子区域可以提供相当好的检索结果,但是对这些子区域进行彻底的搜索是非常耗时的。我们进一步开发了一种简单的快速搜索方法,可以大大简化搜索过程,同时保持良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Searching For The Optimal Area Of TFV Representation
Visual images are often characterized by the distribution of certain key features. Taking the face image as an example, the eye, nose and mouth are often regarded as characterizing features for recognizing face image. We call these aspects structural and statistical information of visual images and aim for developing framework for the unified description of them. We extracts certain features from randomly chosen subareas, these features have good capability to represent the local texture information. We show our retrieval results over the public face database. We found that certain subareas can provide quite good retrieval results, but the thorough searching for such subareas are time-consuming. We further developed a simple fast searching method which can large simplifies the searching process, while in the same time preserve the good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信