{"title":"光伏系统与低压配电网的集成及需求响应应用","authors":"C. K. Gan, M. Shamshiri, D. Pudjianto","doi":"10.1109/PTC.2015.7232777","DOIUrl":null,"url":null,"abstract":"The increasing number of PV system connected to LV distribution networks may trigger network reinforcement to maintain voltages and power flows within the statutory limits. The paper aims to investigate how different levels of Demand Response (DR) participation can facilitate the integration of PV. In order to get robust conclusion, fractal-based generic distribution network model is used to generate many statistically similar networks. Subsequently, a Particle Swarm Optimization approach to model the optimal demand pattern for various levels of DR participation is investigated in the study. The results suggest that DR can significantly improve self (local) consumption of PV output. As a result, network losses decrease and the voltage rise effect at high PV penetration can be alleviated.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"326 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integration of PV system into LV distribution networks with Demand Response application\",\"authors\":\"C. K. Gan, M. Shamshiri, D. Pudjianto\",\"doi\":\"10.1109/PTC.2015.7232777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of PV system connected to LV distribution networks may trigger network reinforcement to maintain voltages and power flows within the statutory limits. The paper aims to investigate how different levels of Demand Response (DR) participation can facilitate the integration of PV. In order to get robust conclusion, fractal-based generic distribution network model is used to generate many statistically similar networks. Subsequently, a Particle Swarm Optimization approach to model the optimal demand pattern for various levels of DR participation is investigated in the study. The results suggest that DR can significantly improve self (local) consumption of PV output. As a result, network losses decrease and the voltage rise effect at high PV penetration can be alleviated.\",\"PeriodicalId\":193448,\"journal\":{\"name\":\"2015 IEEE Eindhoven PowerTech\",\"volume\":\"326 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Eindhoven PowerTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PTC.2015.7232777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of PV system into LV distribution networks with Demand Response application
The increasing number of PV system connected to LV distribution networks may trigger network reinforcement to maintain voltages and power flows within the statutory limits. The paper aims to investigate how different levels of Demand Response (DR) participation can facilitate the integration of PV. In order to get robust conclusion, fractal-based generic distribution network model is used to generate many statistically similar networks. Subsequently, a Particle Swarm Optimization approach to model the optimal demand pattern for various levels of DR participation is investigated in the study. The results suggest that DR can significantly improve self (local) consumption of PV output. As a result, network losses decrease and the voltage rise effect at high PV penetration can be alleviated.