多特征融合支持向量机图像分类算法研究

Lixia Deng, Hongquan Li, Haiying Liu, Hui Zhang, Yang Zhao
{"title":"多特征融合支持向量机图像分类算法研究","authors":"Lixia Deng, Hongquan Li, Haiying Liu, Hui Zhang, Yang Zhao","doi":"10.1109/ICETCI53161.2021.9563611","DOIUrl":null,"url":null,"abstract":"Considering that the traditional machine learning algorithm mainly relies on manual feature extraction for image classification, the classification results are often not ideal. This paper proposes a front-end optimization method based on multi-feature fusion. Extracting image features uses fusion mode of Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) and forms a new feature set HOG-SIFT. Classification results are obtained by training with Support Vector Machine (SVM). Results show that the fusion of new features has a higher precision and recall than single feature extraction.","PeriodicalId":170858,"journal":{"name":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Multi-feature Fusion for Support Vector Machine Image Classification Algorithm\",\"authors\":\"Lixia Deng, Hongquan Li, Haiying Liu, Hui Zhang, Yang Zhao\",\"doi\":\"10.1109/ICETCI53161.2021.9563611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering that the traditional machine learning algorithm mainly relies on manual feature extraction for image classification, the classification results are often not ideal. This paper proposes a front-end optimization method based on multi-feature fusion. Extracting image features uses fusion mode of Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) and forms a new feature set HOG-SIFT. Classification results are obtained by training with Support Vector Machine (SVM). Results show that the fusion of new features has a higher precision and recall than single feature extraction.\",\"PeriodicalId\":170858,\"journal\":{\"name\":\"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETCI53161.2021.9563611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETCI53161.2021.9563611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到传统的机器学习算法主要依靠人工特征提取进行图像分类,分类结果往往不理想。提出了一种基于多特征融合的前端优化方法。利用尺度不变特征变换(SIFT)和梯度直方图(HOG)的融合模式提取图像特征,形成新的特征集HOG-SIFT。通过支持向量机(SVM)训练得到分类结果。结果表明,新特征融合比单一特征提取具有更高的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Multi-feature Fusion for Support Vector Machine Image Classification Algorithm
Considering that the traditional machine learning algorithm mainly relies on manual feature extraction for image classification, the classification results are often not ideal. This paper proposes a front-end optimization method based on multi-feature fusion. Extracting image features uses fusion mode of Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) and forms a new feature set HOG-SIFT. Classification results are obtained by training with Support Vector Machine (SVM). Results show that the fusion of new features has a higher precision and recall than single feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信