个性化图像检索中用户偏好配置文件的构建

Lin He, J. Zhang, L. Zhuo, Lansun Shen
{"title":"个性化图像检索中用户偏好配置文件的构建","authors":"Lin He, J. Zhang, L. Zhuo, Lansun Shen","doi":"10.1109/ICNNSP.2008.4590388","DOIUrl":null,"url":null,"abstract":"In order to reduce the semantic gap between low-level visual features and high-level semantics, a novel approach for constructing user preference profile in personalized image retrieval is proposed. In proposed approach, the user interest is divided into two parts: the short-term interest and the long-term interest. Semantic feature vector in the short-term interest is constructed by building the correlation between image low-level visual features and high-level semantics on the basis of SVM after collecting the visual feature vector in the short-term interest with relevance feedback. Moreover, the visual feature vector in the long-term interest can be collected by the non-linear gradual forgetting interest inference algorithm. Semantic feature vector in the long-term is constructed with clustering algorithm. Experiments results show that the average recall/precision are significantly improved and satisfied by personalized user as well.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Construction of user preference profile in a personalized image retrieval\",\"authors\":\"Lin He, J. Zhang, L. Zhuo, Lansun Shen\",\"doi\":\"10.1109/ICNNSP.2008.4590388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the semantic gap between low-level visual features and high-level semantics, a novel approach for constructing user preference profile in personalized image retrieval is proposed. In proposed approach, the user interest is divided into two parts: the short-term interest and the long-term interest. Semantic feature vector in the short-term interest is constructed by building the correlation between image low-level visual features and high-level semantics on the basis of SVM after collecting the visual feature vector in the short-term interest with relevance feedback. Moreover, the visual feature vector in the long-term interest can be collected by the non-linear gradual forgetting interest inference algorithm. Semantic feature vector in the long-term is constructed with clustering algorithm. Experiments results show that the average recall/precision are significantly improved and satisfied by personalized user as well.\",\"PeriodicalId\":250993,\"journal\":{\"name\":\"2008 International Conference on Neural Networks and Signal Processing\",\"volume\":\"453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Neural Networks and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2008.4590388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了缩小低级视觉特征与高级语义之间的语义差距,提出了一种构建个性化图像检索中用户偏好轮廓的新方法。在该方法中,用户利益分为两部分:短期利益和长期利益。短期兴趣的语义特征向量是在SVM的基础上,通过相关反馈采集短期兴趣的视觉特征向量,建立图像低级视觉特征与高级语义之间的相关性,从而构建短期兴趣的语义特征向量。此外,通过非线性逐渐遗忘兴趣推理算法可以收集长期兴趣的视觉特征向量。采用聚类算法构建长期语义特征向量。实验结果表明,个性化用户对平均查全率和查准率都有显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of user preference profile in a personalized image retrieval
In order to reduce the semantic gap between low-level visual features and high-level semantics, a novel approach for constructing user preference profile in personalized image retrieval is proposed. In proposed approach, the user interest is divided into two parts: the short-term interest and the long-term interest. Semantic feature vector in the short-term interest is constructed by building the correlation between image low-level visual features and high-level semantics on the basis of SVM after collecting the visual feature vector in the short-term interest with relevance feedback. Moreover, the visual feature vector in the long-term interest can be collected by the non-linear gradual forgetting interest inference algorithm. Semantic feature vector in the long-term is constructed with clustering algorithm. Experiments results show that the average recall/precision are significantly improved and satisfied by personalized user as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信