Ahmad AL Smadi, A. Abugabah, Shadrack Fred Mahenge, Farah Shahid
{"title":"医疗环境中的信息系统:使用x射线扫描的Covid-19检测系统","authors":"Ahmad AL Smadi, A. Abugabah, Shadrack Fred Mahenge, Farah Shahid","doi":"10.1109/ICSEC56337.2022.10049310","DOIUrl":null,"url":null,"abstract":"Beginning in 2020, the new coronavirus began to expand globally. Due to Covid-19, millions of individuals are infected. Initially, the availability of corona test kits was problematic. Researchers examined the present scenario and developed the Covid-19 X-ray scan detection system. In terms of Covid-19 detection, artificial intelligence (AI)-based solutions give superior outcomes. Many AI-based models can not provide optimum results because of the issue of overfitting, which has a direct impact on model efficiency. In this work, we developed the CNN-based classification method based on the pre-trained Inception-v3 for normal, viral pneumonia, lung opacity, and Covid-19 samples. In the suggested model, we employed transfer learning to produce promising results for binary class classification. The presented model attained impressive outcomes with an accuracy of 99.42% for Covid-19 vs. Normal, 99.01% for Covid-19 vs. Lung Opacity, and 99.8% for Covid-19 vs. Viral Pneumonia, and 99.93% for Lung Opacity vs. Viral Pneumonia. Comparing the suggested model to existing deep learning-based systems indicated that ours was better.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Systems in Medical Settings: A Covid-19 Detection System Using X-Ray Scans\",\"authors\":\"Ahmad AL Smadi, A. Abugabah, Shadrack Fred Mahenge, Farah Shahid\",\"doi\":\"10.1109/ICSEC56337.2022.10049310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beginning in 2020, the new coronavirus began to expand globally. Due to Covid-19, millions of individuals are infected. Initially, the availability of corona test kits was problematic. Researchers examined the present scenario and developed the Covid-19 X-ray scan detection system. In terms of Covid-19 detection, artificial intelligence (AI)-based solutions give superior outcomes. Many AI-based models can not provide optimum results because of the issue of overfitting, which has a direct impact on model efficiency. In this work, we developed the CNN-based classification method based on the pre-trained Inception-v3 for normal, viral pneumonia, lung opacity, and Covid-19 samples. In the suggested model, we employed transfer learning to produce promising results for binary class classification. The presented model attained impressive outcomes with an accuracy of 99.42% for Covid-19 vs. Normal, 99.01% for Covid-19 vs. Lung Opacity, and 99.8% for Covid-19 vs. Viral Pneumonia, and 99.93% for Lung Opacity vs. Viral Pneumonia. Comparing the suggested model to existing deep learning-based systems indicated that ours was better.\",\"PeriodicalId\":430850,\"journal\":{\"name\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC56337.2022.10049310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Information Systems in Medical Settings: A Covid-19 Detection System Using X-Ray Scans
Beginning in 2020, the new coronavirus began to expand globally. Due to Covid-19, millions of individuals are infected. Initially, the availability of corona test kits was problematic. Researchers examined the present scenario and developed the Covid-19 X-ray scan detection system. In terms of Covid-19 detection, artificial intelligence (AI)-based solutions give superior outcomes. Many AI-based models can not provide optimum results because of the issue of overfitting, which has a direct impact on model efficiency. In this work, we developed the CNN-based classification method based on the pre-trained Inception-v3 for normal, viral pneumonia, lung opacity, and Covid-19 samples. In the suggested model, we employed transfer learning to produce promising results for binary class classification. The presented model attained impressive outcomes with an accuracy of 99.42% for Covid-19 vs. Normal, 99.01% for Covid-19 vs. Lung Opacity, and 99.8% for Covid-19 vs. Viral Pneumonia, and 99.93% for Lung Opacity vs. Viral Pneumonia. Comparing the suggested model to existing deep learning-based systems indicated that ours was better.