大量的代数攻击!

M. Kreuzer
{"title":"大量的代数攻击!","authors":"M. Kreuzer","doi":"10.1515/GCC.2009.231","DOIUrl":null,"url":null,"abstract":"This is the first in a two-part survey of current techniques in algebraic cryptanalysis. After introducing the basic setup of algebraic attacks and discussing several attack scenarios for symmetric cryptosystems, public key cryptosystems, and stream ciphers, we discuss a number of individual methods. The XL, XSL, and MutantXL attacks are based on linearization techniques for multivariate polynomial systems. Then we look at Gröbner basis and border bases methods. In the last section we introduce attacks based on integer programming techniques and try them in some concrete cases.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Algebraic Attacks Galore!\",\"authors\":\"M. Kreuzer\",\"doi\":\"10.1515/GCC.2009.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the first in a two-part survey of current techniques in algebraic cryptanalysis. After introducing the basic setup of algebraic attacks and discussing several attack scenarios for symmetric cryptosystems, public key cryptosystems, and stream ciphers, we discuss a number of individual methods. The XL, XSL, and MutantXL attacks are based on linearization techniques for multivariate polynomial systems. Then we look at Gröbner basis and border bases methods. In the last section we introduce attacks based on integer programming techniques and try them in some concrete cases.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2009.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2009.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

这是当前代数密码分析技术的两部分调查中的第一部分。在介绍了代数攻击的基本设置并讨论了对称密码系统、公钥密码系统和流密码的几种攻击场景之后,我们讨论了一些单独的方法。XL、XSL和MutantXL攻击基于多元多项式系统的线性化技术。然后我们看看Gröbner基和边界基方法。在最后一节中,我们介绍了基于整数规划技术的攻击,并在一些具体案例中进行了尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Attacks Galore!
This is the first in a two-part survey of current techniques in algebraic cryptanalysis. After introducing the basic setup of algebraic attacks and discussing several attack scenarios for symmetric cryptosystems, public key cryptosystems, and stream ciphers, we discuss a number of individual methods. The XL, XSL, and MutantXL attacks are based on linearization techniques for multivariate polynomial systems. Then we look at Gröbner basis and border bases methods. In the last section we introduce attacks based on integer programming techniques and try them in some concrete cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信