{"title":"24 GHz Josephson悬臂增材制造超材料的太赫兹显微镜研究","authors":"B. Hampel, M. Tollkühn, I. Elenskiy, M. Schilling","doi":"10.1109/ISEC46533.2019.8990928","DOIUrl":null,"url":null,"abstract":"Metamaterials are subwavelength structures that can be employed to modify properties of electromagnetic radiation. Their possible fields of application are very diverse and range from antennas to optical filter structures [1]. In this work, a THz microscope setup is employed to characterize additive manufactured metamaterial structures. These structures are optimized for a frequency of f = 24.05 GHz and are additive manufactured by the stereolithographic 3D printer Formlabs Form 2. A low-cost radar chip is used as a source of radiation with a frequency of f= 24.05 GHz and a power of up to 20 dBm. The manufactured structures are positioned between the source and the Josephson cantilever. Measurement results are presented for different metamaterial structures and are visualized in three dimensions. The presented method can be employed for rapid prototyping of metamaterial structures for microwave and terahertz radiation, which are subsequently characterized by THz microscopy.","PeriodicalId":250606,"journal":{"name":"2019 IEEE International Superconductive Electronics Conference (ISEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THz Microscopy of Additive Manufactured Metamaterials at 24 GHz with Josephson Cantilevers\",\"authors\":\"B. Hampel, M. Tollkühn, I. Elenskiy, M. Schilling\",\"doi\":\"10.1109/ISEC46533.2019.8990928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials are subwavelength structures that can be employed to modify properties of electromagnetic radiation. Their possible fields of application are very diverse and range from antennas to optical filter structures [1]. In this work, a THz microscope setup is employed to characterize additive manufactured metamaterial structures. These structures are optimized for a frequency of f = 24.05 GHz and are additive manufactured by the stereolithographic 3D printer Formlabs Form 2. A low-cost radar chip is used as a source of radiation with a frequency of f= 24.05 GHz and a power of up to 20 dBm. The manufactured structures are positioned between the source and the Josephson cantilever. Measurement results are presented for different metamaterial structures and are visualized in three dimensions. The presented method can be employed for rapid prototyping of metamaterial structures for microwave and terahertz radiation, which are subsequently characterized by THz microscopy.\",\"PeriodicalId\":250606,\"journal\":{\"name\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Superconductive Electronics Conference (ISEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEC46533.2019.8990928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Superconductive Electronics Conference (ISEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEC46533.2019.8990928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
超材料是一种亚波长结构,可以用来改变电磁辐射的特性。它们可能的应用领域非常广泛,从天线到光学滤波器结构[1]。在这项工作中,采用太赫兹显微镜装置来表征增材制造的超材料结构。这些结构的优化频率为f = 24.05 GHz,由立体光刻3D打印机Formlabs Form 2进行增材制造。采用低成本雷达芯片作为辐射源,频率为f= 24.05 GHz,功率高达20 dBm。制造的结构位于源和约瑟夫森悬臂之间。对不同的超材料结构给出了测量结果,并以三维形式显示。该方法可用于微波和太赫兹辐射下的超材料结构的快速成型,然后用太赫兹显微镜对其进行表征。
THz Microscopy of Additive Manufactured Metamaterials at 24 GHz with Josephson Cantilevers
Metamaterials are subwavelength structures that can be employed to modify properties of electromagnetic radiation. Their possible fields of application are very diverse and range from antennas to optical filter structures [1]. In this work, a THz microscope setup is employed to characterize additive manufactured metamaterial structures. These structures are optimized for a frequency of f = 24.05 GHz and are additive manufactured by the stereolithographic 3D printer Formlabs Form 2. A low-cost radar chip is used as a source of radiation with a frequency of f= 24.05 GHz and a power of up to 20 dBm. The manufactured structures are positioned between the source and the Josephson cantilever. Measurement results are presented for different metamaterial structures and are visualized in three dimensions. The presented method can be employed for rapid prototyping of metamaterial structures for microwave and terahertz radiation, which are subsequently characterized by THz microscopy.