被分析程序的浮点语义

P. Garoche
{"title":"被分析程序的浮点语义","authors":"P. Garoche","doi":"10.2307/j.ctv80cd4v.11","DOIUrl":null,"url":null,"abstract":"This chapter focuses on floating-point semantics. It first outlines these semantics. The chapter then revisits previous results and adapts them to account for floating-point computations, assuming a bound on the rounding error is provided. A last part focuses on the approaches to bound these imprecisions, over-approximating the floating-point errors. Here, provided bounds on each variable, computing the floating-point error can be performed with classical interval-based analysis. Kleene-based iterations with interval abstract domain provide the appropriate framework to compute such bounds. This is even simpler in this setting because of the focus on bounding the floating-point error on a single call of the dynamic system transition function, that is, a single loop body execution without internal loops.","PeriodicalId":402448,"journal":{"name":"Formal Verification of Control System Software","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floating-point Semantics of Analyzed Programs\",\"authors\":\"P. Garoche\",\"doi\":\"10.2307/j.ctv80cd4v.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter focuses on floating-point semantics. It first outlines these semantics. The chapter then revisits previous results and adapts them to account for floating-point computations, assuming a bound on the rounding error is provided. A last part focuses on the approaches to bound these imprecisions, over-approximating the floating-point errors. Here, provided bounds on each variable, computing the floating-point error can be performed with classical interval-based analysis. Kleene-based iterations with interval abstract domain provide the appropriate framework to compute such bounds. This is even simpler in this setting because of the focus on bounding the floating-point error on a single call of the dynamic system transition function, that is, a single loop body execution without internal loops.\",\"PeriodicalId\":402448,\"journal\":{\"name\":\"Formal Verification of Control System Software\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Verification of Control System Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv80cd4v.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Verification of Control System Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv80cd4v.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章主要讨论浮点语义。它首先概述了这些语义。然后,本章回顾前面的结果,并对其进行调整,以解释浮点计算,假设提供了舍入误差的界限。最后一部分着重于限制这些不精确的方法,过度逼近浮点误差。在这里,只要提供每个变量的边界,就可以使用经典的基于区间的分析来计算浮点误差。具有区间抽象域的基于kleene的迭代为计算这些边界提供了合适的框架。在此设置中,这甚至更简单,因为重点是限定动态系统转换函数的单次调用的浮点错误,也就是说,在没有内部循环的情况下执行单个循环体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floating-point Semantics of Analyzed Programs
This chapter focuses on floating-point semantics. It first outlines these semantics. The chapter then revisits previous results and adapts them to account for floating-point computations, assuming a bound on the rounding error is provided. A last part focuses on the approaches to bound these imprecisions, over-approximating the floating-point errors. Here, provided bounds on each variable, computing the floating-point error can be performed with classical interval-based analysis. Kleene-based iterations with interval abstract domain provide the appropriate framework to compute such bounds. This is even simpler in this setting because of the focus on bounding the floating-point error on a single call of the dynamic system transition function, that is, a single loop body execution without internal loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信