{"title":"具有随机流动性的离散时间期权定价","authors":"Markus Leippold, Steven Schaerer","doi":"10.2139/ssrn.2744493","DOIUrl":null,"url":null,"abstract":"Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Discrete-Time Option Pricing with Stochastic Liquidity\",\"authors\":\"Markus Leippold, Steven Schaerer\",\"doi\":\"10.2139/ssrn.2744493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.\",\"PeriodicalId\":269529,\"journal\":{\"name\":\"Swiss Finance Institute Research Paper Series\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Finance Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2744493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2744493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-Time Option Pricing with Stochastic Liquidity
Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.