具有随机流动性的离散时间期权定价

Markus Leippold, Steven Schaerer
{"title":"具有随机流动性的离散时间期权定价","authors":"Markus Leippold, Steven Schaerer","doi":"10.2139/ssrn.2744493","DOIUrl":null,"url":null,"abstract":"Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Discrete-Time Option Pricing with Stochastic Liquidity\",\"authors\":\"Markus Leippold, Steven Schaerer\",\"doi\":\"10.2139/ssrn.2744493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.\",\"PeriodicalId\":269529,\"journal\":{\"name\":\"Swiss Finance Institute Research Paper Series\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Finance Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2744493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2744493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

经典的期权定价理论通常建立在单一价格定律的基础上,忽视了市场流动性的影响,这可能会导致显著的买卖价差。在经济金融的框架内,我们建立了随机流动性模型,扩展了Madan(2010)的离散时间常数流动性模型。有了这个扩展,我们可以复制通常在期权市场观察到的买卖价差的期限和倾斜结构。我们展示了如何在我们的框架内使用多维二叉树实现这样一个随机流动性模型,并对其进行校准,以对标准普尔500指数进行看涨和看跌期权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-Time Option Pricing with Stochastic Liquidity
Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信