MCMC的后处理

Leah F. South, M. Riabiz, Onur Teymur, C. Oates
{"title":"MCMC的后处理","authors":"Leah F. South, M. Riabiz, Onur Teymur, C. Oates","doi":"10.1146/ANNUREVSTATISTICS-040220-091727","DOIUrl":null,"url":null,"abstract":"Markov chain Monte Carlo is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which \ndirectly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Processing of MCMC\",\"authors\":\"Leah F. South, M. Riabiz, Onur Teymur, C. Oates\",\"doi\":\"10.1146/ANNUREVSTATISTICS-040220-091727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov chain Monte Carlo is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which \\ndirectly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREVSTATISTICS-040220-091727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREVSTATISTICS-040220-091727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫链蒙特卡罗是现代贝叶斯统计的引擎,被用来近似后验和衍生量的兴趣。尽管如此,如何对马尔可夫链的输出进行后处理和报告的问题经常被忽视。收敛诊断可用于通过消除老化来控制偏差,但这些并不能解释有限的计算预算导致偏差-方差权衡的(常见)情况。本文的目的是回顾最先进的技术后处理马尔可夫链输出。我们的综述涵盖了基于差异最小化的方法,这些方法直接解决了偏差-方差权衡问题,以及用于近似感兴趣的期望数量的通用控制变量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-Processing of MCMC
Markov chain Monte Carlo is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which directly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信