病理组织切片语义分割框架

Hongyan Liu
{"title":"病理组织切片语义分割框架","authors":"Hongyan Liu","doi":"10.1117/12.2682438","DOIUrl":null,"url":null,"abstract":"The study of cell nuclei is the starting point of pathological analysis and new drug development in modern medicine [1], and nuclear segmentation is a primary task of nuclear research. This paper proposes an optimization method for nuclear segmentation. It regards the Conditional Generative Adversarial Network (CGAN) [2] as the fundamental segmentation structure, segments the nuclear images by using deep learning Convolutional Neural Network (CNN) [3], and then optimizes and improves the generator, discriminator, and objective function. The experimental results demonstrate that the improved UGAN has superior performance on the semantic segmentation task of the images of pathological tissue slices and can be used as a tool for automatic segmentation of pathological tissue sections.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for semantic segmentation of pathological tissue slices\",\"authors\":\"Hongyan Liu\",\"doi\":\"10.1117/12.2682438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of cell nuclei is the starting point of pathological analysis and new drug development in modern medicine [1], and nuclear segmentation is a primary task of nuclear research. This paper proposes an optimization method for nuclear segmentation. It regards the Conditional Generative Adversarial Network (CGAN) [2] as the fundamental segmentation structure, segments the nuclear images by using deep learning Convolutional Neural Network (CNN) [3], and then optimizes and improves the generator, discriminator, and objective function. The experimental results demonstrate that the improved UGAN has superior performance on the semantic segmentation task of the images of pathological tissue slices and can be used as a tool for automatic segmentation of pathological tissue sections.\",\"PeriodicalId\":440430,\"journal\":{\"name\":\"International Conference on Electronic Technology and Information Science\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Technology and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞核的研究是现代医学病理分析和新药开发的起点[1],细胞核分割是核研究的首要任务。提出了一种核分割的优化方法。它以条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)[2]作为基本分割结构,利用深度学习卷积神经网络(Convolutional Neural Network, CNN)[3]对核图像进行分割,然后对生成器、鉴别器和目标函数进行优化和改进。实验结果表明,改进后的UGAN算法在病理组织切片图像的语义分割任务上具有优异的性能,可以作为病理组织切片自动分割的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for semantic segmentation of pathological tissue slices
The study of cell nuclei is the starting point of pathological analysis and new drug development in modern medicine [1], and nuclear segmentation is a primary task of nuclear research. This paper proposes an optimization method for nuclear segmentation. It regards the Conditional Generative Adversarial Network (CGAN) [2] as the fundamental segmentation structure, segments the nuclear images by using deep learning Convolutional Neural Network (CNN) [3], and then optimizes and improves the generator, discriminator, and objective function. The experimental results demonstrate that the improved UGAN has superior performance on the semantic segmentation task of the images of pathological tissue slices and can be used as a tool for automatic segmentation of pathological tissue sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信