基于区间灰数的GSOM模型研究

Chuanmin Mi, Sifeng Liu, Yan Xu
{"title":"基于区间灰数的GSOM模型研究","authors":"Chuanmin Mi, Sifeng Liu, Yan Xu","doi":"10.1109/GSIS.2007.4443478","DOIUrl":null,"url":null,"abstract":"Considered elements of input node and weight vector are interval grey numbers in Self-organizing Feature Map (SOM), normalized these interval grey numbers, defined the interval grey number Euclidean distance, and proposed Grey SOM (GSOM) model which can solve uncertain problems efficiently. In the end, we studied intelligent clustering of commercial bank off-site regulation empirically using this model. The result showed that: compared with traditional SOM model, GSOM is easy for programming, has a strengthened ability of anti-interference and a higher precision of classification.","PeriodicalId":445155,"journal":{"name":"2007 IEEE International Conference on Grey Systems and Intelligent Services","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study on GSOM model based on interval grey number\",\"authors\":\"Chuanmin Mi, Sifeng Liu, Yan Xu\",\"doi\":\"10.1109/GSIS.2007.4443478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considered elements of input node and weight vector are interval grey numbers in Self-organizing Feature Map (SOM), normalized these interval grey numbers, defined the interval grey number Euclidean distance, and proposed Grey SOM (GSOM) model which can solve uncertain problems efficiently. In the end, we studied intelligent clustering of commercial bank off-site regulation empirically using this model. The result showed that: compared with traditional SOM model, GSOM is easy for programming, has a strengthened ability of anti-interference and a higher precision of classification.\",\"PeriodicalId\":445155,\"journal\":{\"name\":\"2007 IEEE International Conference on Grey Systems and Intelligent Services\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Grey Systems and Intelligent Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSIS.2007.4443478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Grey Systems and Intelligent Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2007.4443478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑自组织特征映射(SOM)中输入节点和权向量的元素为区间灰数,将这些区间灰数归一化,定义区间灰数欧氏距离,提出能够有效解决不确定性问题的灰色SOM (GSOM)模型。最后,运用该模型对商业银行场外监管的智能聚类进行了实证研究。结果表明:与传统的SOM模型相比,GSOM模型易于编程,抗干扰能力增强,分类精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on GSOM model based on interval grey number
Considered elements of input node and weight vector are interval grey numbers in Self-organizing Feature Map (SOM), normalized these interval grey numbers, defined the interval grey number Euclidean distance, and proposed Grey SOM (GSOM) model which can solve uncertain problems efficiently. In the end, we studied intelligent clustering of commercial bank off-site regulation empirically using this model. The result showed that: compared with traditional SOM model, GSOM is easy for programming, has a strengthened ability of anti-interference and a higher precision of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信