基于交互式多模型Cubature滤波的锂离子电池充电状态估计研究

X. Xia, Shangrong Li, Zhengzheng Meng
{"title":"基于交互式多模型Cubature滤波的锂离子电池充电状态估计研究","authors":"X. Xia, Shangrong Li, Zhengzheng Meng","doi":"10.1145/3351917.3351938","DOIUrl":null,"url":null,"abstract":"In this paper, an estimator Interactive multi-model cubature kalman filter (IMM- CKF) based on the combination of interactive multi-model algorithm (IMM) and cubature kalman filter (CKF) is applied to estimate the state of charge of lithium-ion battery. Firstly, two multiple models are set up to represent the different degree of parameter shift in the Lithium ion battery. Equivalent circuit methodology is used to construct the non-linear battery models. Secondly, the Interactive Multiple-Model Cubature Kalman Filter (IMM-CKF) and conventional Cubature Kalman Filter is used to estimate SOC of the battery. the numerical simulations and experiments have been done and the results show the effectiveness of interactive multi-model cubature kalman filter and its advantages over conventional methods with respect to estimation errors and variance. Compared with the traditional EKF, UKF and CKF algorithms, the IMM- CKF algorithm is found to yield better SOC estimation accuracy. The added computational cost of new estimator is acceptable.","PeriodicalId":367885,"journal":{"name":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Lithium-ion Batteries State of Charge Estimation based on Interactive Multiple-model Cubature Filter\",\"authors\":\"X. Xia, Shangrong Li, Zhengzheng Meng\",\"doi\":\"10.1145/3351917.3351938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an estimator Interactive multi-model cubature kalman filter (IMM- CKF) based on the combination of interactive multi-model algorithm (IMM) and cubature kalman filter (CKF) is applied to estimate the state of charge of lithium-ion battery. Firstly, two multiple models are set up to represent the different degree of parameter shift in the Lithium ion battery. Equivalent circuit methodology is used to construct the non-linear battery models. Secondly, the Interactive Multiple-Model Cubature Kalman Filter (IMM-CKF) and conventional Cubature Kalman Filter is used to estimate SOC of the battery. the numerical simulations and experiments have been done and the results show the effectiveness of interactive multi-model cubature kalman filter and its advantages over conventional methods with respect to estimation errors and variance. Compared with the traditional EKF, UKF and CKF algorithms, the IMM- CKF algorithm is found to yield better SOC estimation accuracy. The added computational cost of new estimator is acceptable.\",\"PeriodicalId\":367885,\"journal\":{\"name\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351917.3351938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351917.3351938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将交互式多模型算法(IMM)与库伯卡尔曼滤波(CKF)相结合,提出了一种基于交互多模型库伯卡尔曼滤波(IMM- CKF)的估计器,用于估计锂离子电池的充电状态。首先,建立了两个多元模型来表示锂离子电池中不同程度的参数偏移。采用等效电路方法建立了非线性电池模型。其次,采用交互式多模型Cubature Kalman滤波(IMM-CKF)和传统的Cubature Kalman滤波对电池荷电状态进行估计。数值模拟和实验结果表明了交互式多模型培养卡尔曼滤波的有效性,并在估计误差和方差方面优于传统方法。与传统的EKF、UKF和CKF算法相比,IMM- CKF算法具有更好的SOC估计精度。新估计器增加的计算成本是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Lithium-ion Batteries State of Charge Estimation based on Interactive Multiple-model Cubature Filter
In this paper, an estimator Interactive multi-model cubature kalman filter (IMM- CKF) based on the combination of interactive multi-model algorithm (IMM) and cubature kalman filter (CKF) is applied to estimate the state of charge of lithium-ion battery. Firstly, two multiple models are set up to represent the different degree of parameter shift in the Lithium ion battery. Equivalent circuit methodology is used to construct the non-linear battery models. Secondly, the Interactive Multiple-Model Cubature Kalman Filter (IMM-CKF) and conventional Cubature Kalman Filter is used to estimate SOC of the battery. the numerical simulations and experiments have been done and the results show the effectiveness of interactive multi-model cubature kalman filter and its advantages over conventional methods with respect to estimation errors and variance. Compared with the traditional EKF, UKF and CKF algorithms, the IMM- CKF algorithm is found to yield better SOC estimation accuracy. The added computational cost of new estimator is acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信