外力控制下基于肌动球蛋白的分子穿梭体模拟

Samuel Macharia Kang’iri, Andrew Salem, D. V. Nicolau, T. Nitta
{"title":"外力控制下基于肌动球蛋白的分子穿梭体模拟","authors":"Samuel Macharia Kang’iri, Andrew Salem, D. V. Nicolau, T. Nitta","doi":"10.1109/mhs53471.2021.9767188","DOIUrl":null,"url":null,"abstract":"The high speed of actomyosin is appealing for fast biosensor applications, but its high flexibility is undesirable. To improve directional controllability, microfabricated thin channels are used. An alternative inexpensive solution to this controllability may allow cheaper implementations. Actin filament has been shown to change direction in response to the applied external force. Knowledge of how the actin filament moves under the external force prior to the actual experiments would be useful in tuning the strength and direction of the external force. Here, we used simulation to elucidate the actin filament directional manipulation by the external force field. We found that the actin direction can be controlled inexpensively by selectively applying positive or negative external force fields.","PeriodicalId":175001,"journal":{"name":"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)","volume":"28 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations of Actomyosin-Based Molecular Shuttles Controlled by External Force\",\"authors\":\"Samuel Macharia Kang’iri, Andrew Salem, D. V. Nicolau, T. Nitta\",\"doi\":\"10.1109/mhs53471.2021.9767188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high speed of actomyosin is appealing for fast biosensor applications, but its high flexibility is undesirable. To improve directional controllability, microfabricated thin channels are used. An alternative inexpensive solution to this controllability may allow cheaper implementations. Actin filament has been shown to change direction in response to the applied external force. Knowledge of how the actin filament moves under the external force prior to the actual experiments would be useful in tuning the strength and direction of the external force. Here, we used simulation to elucidate the actin filament directional manipulation by the external force field. We found that the actin direction can be controlled inexpensively by selectively applying positive or negative external force fields.\",\"PeriodicalId\":175001,\"journal\":{\"name\":\"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)\",\"volume\":\"28 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mhs53471.2021.9767188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Micro-NanoMehatronics and Human Science (MHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mhs53471.2021.9767188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌动球蛋白的高速度对快速生物传感器应用具有吸引力,但其高灵活性是不可取的。为了提高定向可控性,采用了微加工的薄通道。这种可控性的另一种廉价的解决方案可能允许更便宜的实现。肌动蛋白丝已显示改变方向,以响应施加的外力。在实际实验之前,了解肌动蛋白丝在外力作用下如何运动,将有助于调整外力的强度和方向。在此,我们用模拟的方法来阐明在外力作用下肌动蛋白丝的方向操纵。我们发现可以通过选择性地施加正或负的外力来控制肌动蛋白的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulations of Actomyosin-Based Molecular Shuttles Controlled by External Force
The high speed of actomyosin is appealing for fast biosensor applications, but its high flexibility is undesirable. To improve directional controllability, microfabricated thin channels are used. An alternative inexpensive solution to this controllability may allow cheaper implementations. Actin filament has been shown to change direction in response to the applied external force. Knowledge of how the actin filament moves under the external force prior to the actual experiments would be useful in tuning the strength and direction of the external force. Here, we used simulation to elucidate the actin filament directional manipulation by the external force field. We found that the actin direction can be controlled inexpensively by selectively applying positive or negative external force fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信