基于分离标记语料库的泰语命名实体识别建模

Kitiya Suriyachay, Virach Sornlertlamvanich
{"title":"基于分离标记语料库的泰语命名实体识别建模","authors":"Kitiya Suriyachay, Virach Sornlertlamvanich","doi":"10.1109/ICAICTA.2018.8541344","DOIUrl":null,"url":null,"abstract":"In the Thai language, named entity can be used with or without a prefix or an indication of word. This may cause confusion between named entity and other types of noun. However, a named entity is likely to be used in adjacent to verbs or prepositions. This means that the adjacent verbs or prepositions to a noun can be as a good feature to determine the type of named entity. There are some studies on named entity recognition (NER) task in other languages such as Indonesian showing that combination of word embedding and part-of-speech (POS) tag can improve the performance of the NER model. In this paper, we investigate the Thai Named Entity Recognition task using Bi-LSTM model with word embedding and POS embedding for dealing with the relatively small and disjointedly labeled corpus. We compare our model with the one without POS tag, and the baseline model of CRF with the similar set of feature. The experiment results show that our proposed model outperforms the other two in all F1-score measures. Especially, in the case of location file, the F1-score is increased by 14 percent.","PeriodicalId":184882,"journal":{"name":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Named Entity Recognition Modeling for the Thai Language from a Disjointedly Labeled Corpus\",\"authors\":\"Kitiya Suriyachay, Virach Sornlertlamvanich\",\"doi\":\"10.1109/ICAICTA.2018.8541344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Thai language, named entity can be used with or without a prefix or an indication of word. This may cause confusion between named entity and other types of noun. However, a named entity is likely to be used in adjacent to verbs or prepositions. This means that the adjacent verbs or prepositions to a noun can be as a good feature to determine the type of named entity. There are some studies on named entity recognition (NER) task in other languages such as Indonesian showing that combination of word embedding and part-of-speech (POS) tag can improve the performance of the NER model. In this paper, we investigate the Thai Named Entity Recognition task using Bi-LSTM model with word embedding and POS embedding for dealing with the relatively small and disjointedly labeled corpus. We compare our model with the one without POS tag, and the baseline model of CRF with the similar set of feature. The experiment results show that our proposed model outperforms the other two in all F1-score measures. Especially, in the case of location file, the F1-score is increased by 14 percent.\",\"PeriodicalId\":184882,\"journal\":{\"name\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2018.8541344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2018.8541344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在泰语中,命名实体可以带或不带前缀或单词指示。这可能会导致命名实体和其他类型的名词之间的混淆。然而,命名实体可能与动词或介词相邻使用。这意味着名词的相邻动词或介词可以作为确定命名实体类型的一个很好的特征。对印尼语等其他语言的命名实体识别(NER)任务的研究表明,将词嵌入和词性标签相结合可以提高命名实体识别模型的性能。在本文中,我们研究了使用Bi-LSTM模型结合词嵌入和POS嵌入来处理相对较小且标记不连贯的语料库的泰语命名实体识别任务。我们将我们的模型与不带POS标签的模型以及具有相似特征集的CRF基线模型进行了比较。实验结果表明,我们提出的模型在所有f1评分指标上都优于其他两种模型。特别是,在位置文件的情况下,f1得分提高了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition Modeling for the Thai Language from a Disjointedly Labeled Corpus
In the Thai language, named entity can be used with or without a prefix or an indication of word. This may cause confusion between named entity and other types of noun. However, a named entity is likely to be used in adjacent to verbs or prepositions. This means that the adjacent verbs or prepositions to a noun can be as a good feature to determine the type of named entity. There are some studies on named entity recognition (NER) task in other languages such as Indonesian showing that combination of word embedding and part-of-speech (POS) tag can improve the performance of the NER model. In this paper, we investigate the Thai Named Entity Recognition task using Bi-LSTM model with word embedding and POS embedding for dealing with the relatively small and disjointedly labeled corpus. We compare our model with the one without POS tag, and the baseline model of CRF with the similar set of feature. The experiment results show that our proposed model outperforms the other two in all F1-score measures. Especially, in the case of location file, the F1-score is increased by 14 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信