基于模式序列相似性和随机森林的假日负荷预测

Kedong Zhu, Yaping Li, Xiaorui Guo, Jiantao Liu, G. Wang
{"title":"基于模式序列相似性和随机森林的假日负荷预测","authors":"Kedong Zhu, Yaping Li, Xiaorui Guo, Jiantao Liu, G. Wang","doi":"10.1109/ICPICS55264.2022.9873588","DOIUrl":null,"url":null,"abstract":"To solve the holiday load forecasting, a novel day-ahead holiday load forecast is proposed by means of pattern sequence similarity and random forest. The prediction for holiday load can be splitted into daily per-unit curve and daily power external value. The prediction for daily per-unit curve is conducted by pattern sequence similarity while daily power external value is predicted by random forest. Then, the above two prediction results synthesis the holiday load with segment correction. It can be found that this methodology is suitable in holiday STLF problem.","PeriodicalId":257180,"journal":{"name":"2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Day-ahead holiday load forecast based on pattern sequence similarity and random forest\",\"authors\":\"Kedong Zhu, Yaping Li, Xiaorui Guo, Jiantao Liu, G. Wang\",\"doi\":\"10.1109/ICPICS55264.2022.9873588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the holiday load forecasting, a novel day-ahead holiday load forecast is proposed by means of pattern sequence similarity and random forest. The prediction for holiday load can be splitted into daily per-unit curve and daily power external value. The prediction for daily per-unit curve is conducted by pattern sequence similarity while daily power external value is predicted by random forest. Then, the above two prediction results synthesis the holiday load with segment correction. It can be found that this methodology is suitable in holiday STLF problem.\",\"PeriodicalId\":257180,\"journal\":{\"name\":\"2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPICS55264.2022.9873588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPICS55264.2022.9873588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对假日负荷预测问题,提出了一种基于模式序列相似性和随机森林的假日负荷预测方法。假日负荷的预测可分为日单位曲线和日功率外值两部分。日单位曲线预测采用模式序列相似度法,日功率外部值预测采用随机森林法。然后,将上述两种预测结果综合假日负荷和分段修正。可以发现,该方法适用于假日STLF问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Day-ahead holiday load forecast based on pattern sequence similarity and random forest
To solve the holiday load forecasting, a novel day-ahead holiday load forecast is proposed by means of pattern sequence similarity and random forest. The prediction for holiday load can be splitted into daily per-unit curve and daily power external value. The prediction for daily per-unit curve is conducted by pattern sequence similarity while daily power external value is predicted by random forest. Then, the above two prediction results synthesis the holiday load with segment correction. It can be found that this methodology is suitable in holiday STLF problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信