教师:教育对话中教师话语生成的快速和重新排序方法

Justin Vasselli, Christopher Vasselli, Adam Nohejl, Taro Watanabe
{"title":"教师:教育对话中教师话语生成的快速和重新排序方法","authors":"Justin Vasselli, Christopher Vasselli, Adam Nohejl, Taro Watanabe","doi":"10.18653/v1/2023.bea-1.63","DOIUrl":null,"url":null,"abstract":"This paper presents our approach to the BEA 2023 shared task of generating teacher responses in educational dialogues, using the Teacher-Student Chatroom Corpus. Our system prompts GPT-3.5-turbo to generate initial suggestions, which are then subjected to reranking. We explore multiple strategies for candidate generation, including prompting for multiple candidates and employing iterative few-shot prompts with negative examples. We aggregate all candidate responses and rerank them based on DialogRPT scores. To handle consecutive turns in the dialogue data, we divide the task of generating teacher utterances into two components: teacher replies to the student and teacher continuations of previously sent messages. Through our proposed methodology, our system achieved the top score on both automated metrics and human evaluation, surpassing the reference human teachers on the latter.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NAISTeacher: A Prompt and Rerank Approach to Generating Teacher Utterances in Educational Dialogues\",\"authors\":\"Justin Vasselli, Christopher Vasselli, Adam Nohejl, Taro Watanabe\",\"doi\":\"10.18653/v1/2023.bea-1.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our approach to the BEA 2023 shared task of generating teacher responses in educational dialogues, using the Teacher-Student Chatroom Corpus. Our system prompts GPT-3.5-turbo to generate initial suggestions, which are then subjected to reranking. We explore multiple strategies for candidate generation, including prompting for multiple candidates and employing iterative few-shot prompts with negative examples. We aggregate all candidate responses and rerank them based on DialogRPT scores. To handle consecutive turns in the dialogue data, we divide the task of generating teacher utterances into two components: teacher replies to the student and teacher continuations of previously sent messages. Through our proposed methodology, our system achieved the top score on both automated metrics and human evaluation, surpassing the reference human teachers on the latter.\",\"PeriodicalId\":363390,\"journal\":{\"name\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.bea-1.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.bea-1.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了我们使用师生聊天室语料库在教育对话中生成教师响应的BEA 2023共享任务的方法。我们的系统提示gpt -3.5 turbo生成初始建议,然后对其进行重新排名。我们探索了候选人生成的多种策略,包括对多个候选人进行提示和使用带有负面例子的迭代少镜头提示。我们汇总所有候选人的回答,并根据对话grpt分数对其重新排序。为了处理对话数据中的连续转折,我们将生成教师话语的任务分为两个部分:教师对学生的回复和教师对先前发送消息的继续。通过我们提出的方法,我们的系统在自动化指标和人工评估方面都取得了最高分,超过了后者的参考人类教师。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NAISTeacher: A Prompt and Rerank Approach to Generating Teacher Utterances in Educational Dialogues
This paper presents our approach to the BEA 2023 shared task of generating teacher responses in educational dialogues, using the Teacher-Student Chatroom Corpus. Our system prompts GPT-3.5-turbo to generate initial suggestions, which are then subjected to reranking. We explore multiple strategies for candidate generation, including prompting for multiple candidates and employing iterative few-shot prompts with negative examples. We aggregate all candidate responses and rerank them based on DialogRPT scores. To handle consecutive turns in the dialogue data, we divide the task of generating teacher utterances into two components: teacher replies to the student and teacher continuations of previously sent messages. Through our proposed methodology, our system achieved the top score on both automated metrics and human evaluation, surpassing the reference human teachers on the latter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信