{"title":"费马-比尔定理的证明","authors":"Leszek W. Guła","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.11.4","DOIUrl":null,"url":null,"abstract":"It is easy to see that if then either are co-prime or, if not co-prime that any common factor could be divided out of each term until the equation existed with co-prime bases. (Co-prime is synonymous with pairwise relatively prime and means that in a given set of numbers, no two of the numbers share a common factor). You could then restate FLT by saying that is impossible with co-prime bases. (Yes, it is also impossible without co-prime bases, but non co-prime bases can only exist as a consequence of co-prime bases). II. THE FERMAT-BEAL THEOREM For all the equation","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"308 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Proof of the Fermat-Beal Theorem\",\"authors\":\"Leszek W. Guła\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.11.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is easy to see that if then either are co-prime or, if not co-prime that any common factor could be divided out of each term until the equation existed with co-prime bases. (Co-prime is synonymous with pairwise relatively prime and means that in a given set of numbers, no two of the numbers share a common factor). You could then restate FLT by saying that is impossible with co-prime bases. (Yes, it is also impossible without co-prime bases, but non co-prime bases can only exist as a consequence of co-prime bases). II. THE FERMAT-BEAL THEOREM For all the equation\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"308 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.11.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.11.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is easy to see that if then either are co-prime or, if not co-prime that any common factor could be divided out of each term until the equation existed with co-prime bases. (Co-prime is synonymous with pairwise relatively prime and means that in a given set of numbers, no two of the numbers share a common factor). You could then restate FLT by saying that is impossible with co-prime bases. (Yes, it is also impossible without co-prime bases, but non co-prime bases can only exist as a consequence of co-prime bases). II. THE FERMAT-BEAL THEOREM For all the equation