任意稀疏采样磁共振图像的迭代重建方法

H. Pirsiavash, M. Soleymani, G. Hossein-Zadeh
{"title":"任意稀疏采样磁共振图像的迭代重建方法","authors":"H. Pirsiavash, M. Soleymani, G. Hossein-Zadeh","doi":"10.1109/CBMS.2005.27","DOIUrl":null,"url":null,"abstract":"In many fast MR imaging techniques, K-space is sampled sparsely in order to gain a fast traverse of K-space. These techniques use non-Cartesian sampling trajectories like radial, zigzag, and spiral. In the reconstruction procedure, usually interpolation methods are used to obtain missing samples on a regular grid. In this paper, we propose an iterative method for image reconstruction which uses the black marginal area of the image. The proposed iterative solution offers a great enhancement in the quality of the reconstructed image in comparison with conventional algorithms like zero filling and neural network. This method is applied on MRI data and its improved performance over other methods is demonstrated.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An iterative approach for reconstruction of arbitrary sparsely sampled magnetic resonance images\",\"authors\":\"H. Pirsiavash, M. Soleymani, G. Hossein-Zadeh\",\"doi\":\"10.1109/CBMS.2005.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many fast MR imaging techniques, K-space is sampled sparsely in order to gain a fast traverse of K-space. These techniques use non-Cartesian sampling trajectories like radial, zigzag, and spiral. In the reconstruction procedure, usually interpolation methods are used to obtain missing samples on a regular grid. In this paper, we propose an iterative method for image reconstruction which uses the black marginal area of the image. The proposed iterative solution offers a great enhancement in the quality of the reconstructed image in comparison with conventional algorithms like zero filling and neural network. This method is applied on MRI data and its improved performance over other methods is demonstrated.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在许多快速磁共振成像技术中,为了获得快速遍历k空间,对k空间进行稀疏采样。这些技术使用非笛卡尔采样轨迹,如径向、之字形和螺旋形。在重建过程中,通常采用插值方法在规则网格上获取缺失样本。本文提出了一种利用图像的黑色边缘区域进行图像重建的迭代方法。与传统的零填充和神经网络算法相比,所提出的迭代解在重建图像的质量上有很大的提高。将该方法应用于MRI数据,证明其性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative approach for reconstruction of arbitrary sparsely sampled magnetic resonance images
In many fast MR imaging techniques, K-space is sampled sparsely in order to gain a fast traverse of K-space. These techniques use non-Cartesian sampling trajectories like radial, zigzag, and spiral. In the reconstruction procedure, usually interpolation methods are used to obtain missing samples on a regular grid. In this paper, we propose an iterative method for image reconstruction which uses the black marginal area of the image. The proposed iterative solution offers a great enhancement in the quality of the reconstructed image in comparison with conventional algorithms like zero filling and neural network. This method is applied on MRI data and its improved performance over other methods is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信