基于混沌理论的光伏发电功率预测新方法

H. Bazine, Mustapha Adar, M. Mabrouki, Ahmed Chebak
{"title":"基于混沌理论的光伏发电功率预测新方法","authors":"H. Bazine, Mustapha Adar, M. Mabrouki, Ahmed Chebak","doi":"10.1109/IRSEC.2018.8702945","DOIUrl":null,"url":null,"abstract":"Variability represents the main problem related to renewable energies. Their intermittent nature constitutes the greatest obstacle to their complete adoption. For this reason, and despite the efforts made in this field, renewable energies are not yet able to replace fossil fuels, hence the importance of prediction. This work proposes a new method of photovoltaic energy prediction, founded on dynamic behavior analysis. This approach is to use phase space reconstruction, to build the input of the neural network in order to take into account the dynamics of the system in the forecasting process. Then, to improve the precision, we introduce the wavelet transformation. We tested this approach on photovoltaic production of the Faculty of Science and Technology of Beni Mellal, Morocco. Finally, the comparison between predictions and actual observations confirmed the effectiveness of our approach.","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Approach for Photovoltaic Power Prediction Based on Chaos Theory\",\"authors\":\"H. Bazine, Mustapha Adar, M. Mabrouki, Ahmed Chebak\",\"doi\":\"10.1109/IRSEC.2018.8702945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variability represents the main problem related to renewable energies. Their intermittent nature constitutes the greatest obstacle to their complete adoption. For this reason, and despite the efforts made in this field, renewable energies are not yet able to replace fossil fuels, hence the importance of prediction. This work proposes a new method of photovoltaic energy prediction, founded on dynamic behavior analysis. This approach is to use phase space reconstruction, to build the input of the neural network in order to take into account the dynamics of the system in the forecasting process. Then, to improve the precision, we introduce the wavelet transformation. We tested this approach on photovoltaic production of the Faculty of Science and Technology of Beni Mellal, Morocco. Finally, the comparison between predictions and actual observations confirmed the effectiveness of our approach.\",\"PeriodicalId\":186042,\"journal\":{\"name\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2018.8702945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可变性是与可再生能源有关的主要问题。它们的间歇性是完全采用它们的最大障碍。由于这个原因,尽管在这一领域做出了努力,可再生能源还不能取代化石燃料,因此预测的重要性。本文提出了一种基于动态行为分析的光伏能量预测新方法。这种方法是利用相空间重构,来构建神经网络的输入,以便在预测过程中考虑系统的动态性。然后,为了提高精度,引入了小波变换。我们在摩洛哥Beni Mellal科学技术学院的光伏生产中测试了这种方法。最后,预测和实际观测的对比证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Approach for Photovoltaic Power Prediction Based on Chaos Theory
Variability represents the main problem related to renewable energies. Their intermittent nature constitutes the greatest obstacle to their complete adoption. For this reason, and despite the efforts made in this field, renewable energies are not yet able to replace fossil fuels, hence the importance of prediction. This work proposes a new method of photovoltaic energy prediction, founded on dynamic behavior analysis. This approach is to use phase space reconstruction, to build the input of the neural network in order to take into account the dynamics of the system in the forecasting process. Then, to improve the precision, we introduce the wavelet transformation. We tested this approach on photovoltaic production of the Faculty of Science and Technology of Beni Mellal, Morocco. Finally, the comparison between predictions and actual observations confirmed the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信