基于模因类别检测的“是或不是”提示增强硬否定生成

Jian Cui, Lin Li, Xiaohui Tao
{"title":"基于模因类别检测的“是或不是”提示增强硬否定生成","authors":"Jian Cui, Lin Li, Xiaohui Tao","doi":"10.1109/ICME55011.2023.00038","DOIUrl":null,"url":null,"abstract":"Memes are one of the most popular social media in online disinformation campaigns. Their creators often use a variety of rhetoric and psychological skills to achieve the purpose of misinformed audiences. These characteristics lead to the unsatisfactory performance of memes category detection tasks, such as predicting propaganda techniques, being harmful or not, and so on. To this end, we propose a novel memes category detection model via Be-or-Not Prompt Enhanced hard Negatives generating (BNPEN). Firstly, our BNPEN is reformulated into a contrastive learning-based image-text matching (ITM) task through category-padded prompt engineering. Secondly, we design the be-or-not prompt templates to keep the writing style of memes and create hard negative image-text pairs. Finally, our negatives generating can alleviate the negative-positive-coupling (NPC) effects in contrastive learning, thus improving the image-text matching quality. Conducted on two public datasets, experimental results show that our BNPEN is better than the off-the-shelf multi-modal learning models in terms of F1 and Accuracy measures.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Be-or-Not Prompt Enhanced Hard Negatives Generating For Memes Category Detection\",\"authors\":\"Jian Cui, Lin Li, Xiaohui Tao\",\"doi\":\"10.1109/ICME55011.2023.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memes are one of the most popular social media in online disinformation campaigns. Their creators often use a variety of rhetoric and psychological skills to achieve the purpose of misinformed audiences. These characteristics lead to the unsatisfactory performance of memes category detection tasks, such as predicting propaganda techniques, being harmful or not, and so on. To this end, we propose a novel memes category detection model via Be-or-Not Prompt Enhanced hard Negatives generating (BNPEN). Firstly, our BNPEN is reformulated into a contrastive learning-based image-text matching (ITM) task through category-padded prompt engineering. Secondly, we design the be-or-not prompt templates to keep the writing style of memes and create hard negative image-text pairs. Finally, our negatives generating can alleviate the negative-positive-coupling (NPC) effects in contrastive learning, thus improving the image-text matching quality. Conducted on two public datasets, experimental results show that our BNPEN is better than the off-the-shelf multi-modal learning models in terms of F1 and Accuracy measures.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表情包是网络造谣活动中最受欢迎的社交媒体之一。它们的创造者经常使用各种修辞和心理技巧来达到误导受众的目的。这些特征导致模因类别检测任务的表现不理想,如预测宣传技术、是否有害等。为此,我们提出了一种新的模因类别检测模型,该模型采用“是非”提示增强硬否定生成(BNPEN)方法。首先,通过分类填充提示工程将我们的BNPEN重新表述为基于对比学习的图像-文本匹配(ITM)任务。其次,我们设计了“是或不是”的提示模板,以保持模因的写作风格,并创建硬否定的图像-文本对。最后,我们的否定生成可以缓解对比学习中的负-正耦合(NPC)效应,从而提高图像-文本匹配质量。在两个公共数据集上进行的实验结果表明,我们的BNPEN在F1和精度度量方面优于现有的多模态学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Be-or-Not Prompt Enhanced Hard Negatives Generating For Memes Category Detection
Memes are one of the most popular social media in online disinformation campaigns. Their creators often use a variety of rhetoric and psychological skills to achieve the purpose of misinformed audiences. These characteristics lead to the unsatisfactory performance of memes category detection tasks, such as predicting propaganda techniques, being harmful or not, and so on. To this end, we propose a novel memes category detection model via Be-or-Not Prompt Enhanced hard Negatives generating (BNPEN). Firstly, our BNPEN is reformulated into a contrastive learning-based image-text matching (ITM) task through category-padded prompt engineering. Secondly, we design the be-or-not prompt templates to keep the writing style of memes and create hard negative image-text pairs. Finally, our negatives generating can alleviate the negative-positive-coupling (NPC) effects in contrastive learning, thus improving the image-text matching quality. Conducted on two public datasets, experimental results show that our BNPEN is better than the off-the-shelf multi-modal learning models in terms of F1 and Accuracy measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信