不可观测成分模型能预测俄罗斯的通货膨胀吗?

Bulat Gafarov
{"title":"不可观测成分模型能预测俄罗斯的通货膨胀吗?","authors":"Bulat Gafarov","doi":"10.2139/ssrn.2333459","DOIUrl":null,"url":null,"abstract":"I apply the model with unobserved components and stochastic volatility (UC-SV) to forecast the Russian consumer price index. I extend the model which was previously suggested as a model for inflation forecasting in the USA to take into account a possible difference in model parameters and seasonal factor. Comparison of the out-of-sample forecasting performance of the linear AR model and the UC-SV model by mean squared error of prediction shows better results for the latter model. Relatively small absolute value of the standard error of the forecasts calculated by the UC-SV model makes it a reasonable candidate for a real time forecasting method for the Russian CPI.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do Unobserved Components Models Forecast Inflation in Russia?\",\"authors\":\"Bulat Gafarov\",\"doi\":\"10.2139/ssrn.2333459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I apply the model with unobserved components and stochastic volatility (UC-SV) to forecast the Russian consumer price index. I extend the model which was previously suggested as a model for inflation forecasting in the USA to take into account a possible difference in model parameters and seasonal factor. Comparison of the out-of-sample forecasting performance of the linear AR model and the UC-SV model by mean squared error of prediction shows better results for the latter model. Relatively small absolute value of the standard error of the forecasts calculated by the UC-SV model makes it a reasonable candidate for a real time forecasting method for the Russian CPI.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2333459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2333459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文运用无观测分量和随机波动率(UC-SV)模型对俄罗斯消费者价格指数进行预测。我扩展了之前被建议作为美国通货膨胀预测模型的模型,以考虑模型参数和季节因素可能存在的差异。通过预测均方误差比较线性AR模型和UC-SV模型的样本外预测性能,后者模型的预测效果更好。UC-SV模型计算的预测值的标准误差绝对值相对较小,使其成为俄罗斯CPI实时预测方法的合理候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do Unobserved Components Models Forecast Inflation in Russia?
I apply the model with unobserved components and stochastic volatility (UC-SV) to forecast the Russian consumer price index. I extend the model which was previously suggested as a model for inflation forecasting in the USA to take into account a possible difference in model parameters and seasonal factor. Comparison of the out-of-sample forecasting performance of the linear AR model and the UC-SV model by mean squared error of prediction shows better results for the latter model. Relatively small absolute value of the standard error of the forecasts calculated by the UC-SV model makes it a reasonable candidate for a real time forecasting method for the Russian CPI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信