Ana M. C. Rodrigues, Catia F. Oliveira, T. Sousa, Luís Machado, J. Afonso, V. Monteiro
{"title":"集成可再生能源和储能系统的统一三端口拓扑,并网接口作为有源电力滤波器","authors":"Ana M. C. Rodrigues, Catia F. Oliveira, T. Sousa, Luís Machado, J. Afonso, V. Monteiro","doi":"10.1109/CPE-POWERENG48600.2020.9161670","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental validation of a unified three-port topology, integrating a renewable energy source (RES) and an energy storage system (ESS) (or an electric vehicle) with the grid-interface operating as active power filter (APF). The proposed topology is based on a three-phase grid-interface (whose role is to operate as a APF grid-tied inverter capable of compensating current harmonics, imbalanced currents and low power factor), on a RES-interface for solar photovoltaic (PV) panels (whose role is to extract the maximum power from the PV panels), and on an ESS-interface for batteries (whose role is to store/inject energy according to the power management of the electrical installation). The paper presents the control algorithms for each interface within the scope of the different operation modes allowed by the unified three-port topology. Simulation and experimental results are presented in order to validate the distinguishing aspects of the proposed unified three-port topology.","PeriodicalId":111104,"journal":{"name":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unified Three-Port Topology Integrating a Renewable and an Energy Storage System with the Grid-Interface Operating as Active Power Filter\",\"authors\":\"Ana M. C. Rodrigues, Catia F. Oliveira, T. Sousa, Luís Machado, J. Afonso, V. Monteiro\",\"doi\":\"10.1109/CPE-POWERENG48600.2020.9161670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the experimental validation of a unified three-port topology, integrating a renewable energy source (RES) and an energy storage system (ESS) (or an electric vehicle) with the grid-interface operating as active power filter (APF). The proposed topology is based on a three-phase grid-interface (whose role is to operate as a APF grid-tied inverter capable of compensating current harmonics, imbalanced currents and low power factor), on a RES-interface for solar photovoltaic (PV) panels (whose role is to extract the maximum power from the PV panels), and on an ESS-interface for batteries (whose role is to store/inject energy according to the power management of the electrical installation). The paper presents the control algorithms for each interface within the scope of the different operation modes allowed by the unified three-port topology. Simulation and experimental results are presented in order to validate the distinguishing aspects of the proposed unified three-port topology.\",\"PeriodicalId\":111104,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPE-POWERENG48600.2020.9161670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG48600.2020.9161670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified Three-Port Topology Integrating a Renewable and an Energy Storage System with the Grid-Interface Operating as Active Power Filter
This paper presents the experimental validation of a unified three-port topology, integrating a renewable energy source (RES) and an energy storage system (ESS) (or an electric vehicle) with the grid-interface operating as active power filter (APF). The proposed topology is based on a three-phase grid-interface (whose role is to operate as a APF grid-tied inverter capable of compensating current harmonics, imbalanced currents and low power factor), on a RES-interface for solar photovoltaic (PV) panels (whose role is to extract the maximum power from the PV panels), and on an ESS-interface for batteries (whose role is to store/inject energy according to the power management of the electrical installation). The paper presents the control algorithms for each interface within the scope of the different operation modes allowed by the unified three-port topology. Simulation and experimental results are presented in order to validate the distinguishing aspects of the proposed unified three-port topology.