基于信息偏好连接的有向网络链路预测

Xuelei Zhao, Xinsheng Ji, Shuxin Liu, Zanyuan He
{"title":"基于信息偏好连接的有向网络链路预测","authors":"Xuelei Zhao, Xinsheng Ji, Shuxin Liu, Zanyuan He","doi":"10.1109/SmartIoT49966.2020.00035","DOIUrl":null,"url":null,"abstract":"Link prediction aims to predict undetected or unknown links through network information. Most prediction indicators depend on local topology but ignore the pivot role of nodes. Aiming at the problem of topological sparseness in some directed scale-free networks, a preference attachment method based on Shannon theory is proposed to measure the relevance of information from the perspective of nodes. This paper defined the nodes self-information while analyzing nodes interaction process and the conditional information while analyzing the conditional probability of effective interaction based on information theory, and use them designed a new predict indicator. Experiments on 9 scale-free networks show that the proposed method has a better improvement under the Precision metrics.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Link Prediction Based on Information Preference Connection for Directed Network\",\"authors\":\"Xuelei Zhao, Xinsheng Ji, Shuxin Liu, Zanyuan He\",\"doi\":\"10.1109/SmartIoT49966.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Link prediction aims to predict undetected or unknown links through network information. Most prediction indicators depend on local topology but ignore the pivot role of nodes. Aiming at the problem of topological sparseness in some directed scale-free networks, a preference attachment method based on Shannon theory is proposed to measure the relevance of information from the perspective of nodes. This paper defined the nodes self-information while analyzing nodes interaction process and the conditional information while analyzing the conditional probability of effective interaction based on information theory, and use them designed a new predict indicator. Experiments on 9 scale-free networks show that the proposed method has a better improvement under the Precision metrics.\",\"PeriodicalId\":399187,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT49966.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

链路预测的目的是通过网络信息对未检测到或未知的链路进行预测。大多数预测指标依赖于局部拓扑,而忽略了节点的支点作用。针对一些有向无标度网络的拓扑稀疏性问题,提出了一种基于Shannon理论的偏好依恋方法,从节点的角度度量信息的相关性。本文基于信息论,在分析节点交互过程时定义节点自信息,在分析有效交互条件概率时定义节点条件信息,并利用它们设计了新的预测指标。在9个无标度网络上的实验表明,该方法在精度指标下有较好的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link Prediction Based on Information Preference Connection for Directed Network
Link prediction aims to predict undetected or unknown links through network information. Most prediction indicators depend on local topology but ignore the pivot role of nodes. Aiming at the problem of topological sparseness in some directed scale-free networks, a preference attachment method based on Shannon theory is proposed to measure the relevance of information from the perspective of nodes. This paper defined the nodes self-information while analyzing nodes interaction process and the conditional information while analyzing the conditional probability of effective interaction based on information theory, and use them designed a new predict indicator. Experiments on 9 scale-free networks show that the proposed method has a better improvement under the Precision metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信