基于算法的双次排序并行算法容错策略

E. T. Camargo, E. P. Duarte
{"title":"基于算法的双次排序并行算法容错策略","authors":"E. T. Camargo, E. P. Duarte","doi":"10.1109/ladc53747.2021.9672590","DOIUrl":null,"url":null,"abstract":"High Performance Computing (HPC) systems are employed to solve hard problems and rely on parallel algorithms which present very long execution times - up to several days. These systems are expensive in terms of the computational resources required, including energy consumption. Thus, after failures occur it is highly desirable to loose as little of the work that has already been done as possible. In this work we present an Algorithm-Based Fault Tolerance (ABFT) strategy that can be applied to make a robust version of any hypercube-based parallel algorithm. Note that we do not assume a physical hypercube: after nodes crash, fault-free nodes autonomously adapt themselves according to a logical topology called VCube, preserving several logarithmic properties. The proposed strategy guarantees that the algorithm does not halt even after up to (N - 1) nodes crash, in a system of N nodes. We use parallel sorting as a case study, describing how to make a fault-tolerant version of the Bitonic Sort parallel algorithm. The algorithm was implemented in MPI using ULMF to handle faults. Experimental results are presented showing the performance and robustness of the proposed solution.","PeriodicalId":376642,"journal":{"name":"2021 10th Latin-American Symposium on Dependable Computing (LADC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm-Based Fault Tolerance Strategy for the Bitonic Sort Parallel Algorithm\",\"authors\":\"E. T. Camargo, E. P. Duarte\",\"doi\":\"10.1109/ladc53747.2021.9672590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Performance Computing (HPC) systems are employed to solve hard problems and rely on parallel algorithms which present very long execution times - up to several days. These systems are expensive in terms of the computational resources required, including energy consumption. Thus, after failures occur it is highly desirable to loose as little of the work that has already been done as possible. In this work we present an Algorithm-Based Fault Tolerance (ABFT) strategy that can be applied to make a robust version of any hypercube-based parallel algorithm. Note that we do not assume a physical hypercube: after nodes crash, fault-free nodes autonomously adapt themselves according to a logical topology called VCube, preserving several logarithmic properties. The proposed strategy guarantees that the algorithm does not halt even after up to (N - 1) nodes crash, in a system of N nodes. We use parallel sorting as a case study, describing how to make a fault-tolerant version of the Bitonic Sort parallel algorithm. The algorithm was implemented in MPI using ULMF to handle faults. Experimental results are presented showing the performance and robustness of the proposed solution.\",\"PeriodicalId\":376642,\"journal\":{\"name\":\"2021 10th Latin-American Symposium on Dependable Computing (LADC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th Latin-American Symposium on Dependable Computing (LADC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ladc53747.2021.9672590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th Latin-American Symposium on Dependable Computing (LADC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ladc53747.2021.9672590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高性能计算(HPC)系统被用来解决难题,并依赖于并行算法,这些算法的执行时间很长——长达几天。就所需的计算资源(包括能源消耗)而言,这些系统是昂贵的。因此,在发生故障后,尽可能少地丢失已经完成的工作是非常可取的。在这项工作中,我们提出了一种基于算法的容错(ABFT)策略,该策略可用于制作任何基于超立方体的并行算法的鲁棒版本。请注意,我们没有假设一个物理超立方体:在节点崩溃后,无故障节点会根据称为VCube的逻辑拓扑自主调整自己,从而保留几个对数属性。所提出的策略保证了在N个节点的系统中,即使在多达(N - 1)个节点崩溃后,算法也不会停止。我们使用并行排序作为案例研究,描述了如何制作一个容错版本的Bitonic Sort并行算法。该算法在MPI中实现,采用ULMF进行故障处理。实验结果表明了该方法的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm-Based Fault Tolerance Strategy for the Bitonic Sort Parallel Algorithm
High Performance Computing (HPC) systems are employed to solve hard problems and rely on parallel algorithms which present very long execution times - up to several days. These systems are expensive in terms of the computational resources required, including energy consumption. Thus, after failures occur it is highly desirable to loose as little of the work that has already been done as possible. In this work we present an Algorithm-Based Fault Tolerance (ABFT) strategy that can be applied to make a robust version of any hypercube-based parallel algorithm. Note that we do not assume a physical hypercube: after nodes crash, fault-free nodes autonomously adapt themselves according to a logical topology called VCube, preserving several logarithmic properties. The proposed strategy guarantees that the algorithm does not halt even after up to (N - 1) nodes crash, in a system of N nodes. We use parallel sorting as a case study, describing how to make a fault-tolerant version of the Bitonic Sort parallel algorithm. The algorithm was implemented in MPI using ULMF to handle faults. Experimental results are presented showing the performance and robustness of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信