动态网络的分层变化点检测

Yu Wang, Aniket Chakrabarti, David J Sivakoff, S. Parthasarathy
{"title":"动态网络的分层变化点检测","authors":"Yu Wang, Aniket Chakrabarti, David J Sivakoff, S. Parthasarathy","doi":"10.1145/3091478.3091493","DOIUrl":null,"url":null,"abstract":"This paper studies change point detection on networks with community structures. It proposes a framework that can detect both local and global changes in networks efficiently. Importantly, it can clearly distinguish the two types of changes. The framework design is generic and as such several state-of-the-art change point detection algorithms can fit in this design. Experiments on both synthetic and real-world networks show that this framework can accurately detect changes while achieving up to 800X speedup.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hierarchical Change Point Detection on Dynamic Networks\",\"authors\":\"Yu Wang, Aniket Chakrabarti, David J Sivakoff, S. Parthasarathy\",\"doi\":\"10.1145/3091478.3091493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies change point detection on networks with community structures. It proposes a framework that can detect both local and global changes in networks efficiently. Importantly, it can clearly distinguish the two types of changes. The framework design is generic and as such several state-of-the-art change point detection algorithms can fit in this design. Experiments on both synthetic and real-world networks show that this framework can accurately detect changes while achieving up to 800X speedup.\",\"PeriodicalId\":165747,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3091478.3091493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了具有社团结构的网络变化点检测问题。提出了一种能够有效检测网络局部和全局变化的框架。重要的是,它可以清楚地区分两种类型的变化。框架设计是通用的,因此几种最先进的变化点检测算法可以适用于这种设计。在合成网络和实际网络上的实验表明,该框架可以准确地检测变化,同时实现高达800倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Change Point Detection on Dynamic Networks
This paper studies change point detection on networks with community structures. It proposes a framework that can detect both local and global changes in networks efficiently. Importantly, it can clearly distinguish the two types of changes. The framework design is generic and as such several state-of-the-art change point detection algorithms can fit in this design. Experiments on both synthetic and real-world networks show that this framework can accurately detect changes while achieving up to 800X speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信