基于细胞神经网络的人工天线瓣

T. Ayhan, M. K. Muezzinoglu, M.E. Yaln
{"title":"基于细胞神经网络的人工天线瓣","authors":"T. Ayhan, M. K. Muezzinoglu, M.E. Yaln","doi":"10.1109/CNNA.2010.5430285","DOIUrl":null,"url":null,"abstract":"Two fundamental problems in olfactory signal processing is the large time constant and the large variance in the odor receptor code. Depending on the sensing technology and the analyte under investigation, obtaining a steady-state pattern from a sensor array may take minutes, yet still be unreliable. Therefore, odors are encoded in a spatio-temporal fashion in the nature, a task that fits very well in Cellular Neural Network (CNN) paradigm. Inspired by the generic insect olfactory system, we propose a CNN-based signal conditioning system that can be directly applicable on raw sensor data in real time. We interface the system with a Support Vector Machine (SVM) classifier, which maps the dynamically-encoded odor to an identity, and demonstrate the recognition system on a dataset recorded from a metal-oxide odor sensor array.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cellular Neural Network based artificial antennal lobe\",\"authors\":\"T. Ayhan, M. K. Muezzinoglu, M.E. Yaln\",\"doi\":\"10.1109/CNNA.2010.5430285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two fundamental problems in olfactory signal processing is the large time constant and the large variance in the odor receptor code. Depending on the sensing technology and the analyte under investigation, obtaining a steady-state pattern from a sensor array may take minutes, yet still be unreliable. Therefore, odors are encoded in a spatio-temporal fashion in the nature, a task that fits very well in Cellular Neural Network (CNN) paradigm. Inspired by the generic insect olfactory system, we propose a CNN-based signal conditioning system that can be directly applicable on raw sensor data in real time. We interface the system with a Support Vector Machine (SVM) classifier, which maps the dynamically-encoded odor to an identity, and demonstrate the recognition system on a dataset recorded from a metal-oxide odor sensor array.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

嗅觉信号处理的两个基本问题是大时间常数和气味受体编码的大方差。根据传感技术和所调查的分析物,从传感器阵列获得稳态模式可能需要几分钟,但仍然不可靠。因此,气味在自然界中以时空方式编码,这一任务非常适合细胞神经网络(CNN)范式。受普通昆虫嗅觉系统的启发,我们提出了一种基于cnn的信号调理系统,可以直接应用于实时的原始传感器数据。我们将系统与支持向量机(SVM)分类器接口,该分类器将动态编码的气味映射到身份,并在从金属氧化物气味传感器阵列记录的数据集上演示识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular Neural Network based artificial antennal lobe
Two fundamental problems in olfactory signal processing is the large time constant and the large variance in the odor receptor code. Depending on the sensing technology and the analyte under investigation, obtaining a steady-state pattern from a sensor array may take minutes, yet still be unreliable. Therefore, odors are encoded in a spatio-temporal fashion in the nature, a task that fits very well in Cellular Neural Network (CNN) paradigm. Inspired by the generic insect olfactory system, we propose a CNN-based signal conditioning system that can be directly applicable on raw sensor data in real time. We interface the system with a Support Vector Machine (SVM) classifier, which maps the dynamically-encoded odor to an identity, and demonstrate the recognition system on a dataset recorded from a metal-oxide odor sensor array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信