基于传统数据集的深度学习性别分类评估

M. D. Coco, P. Carcagnì, Marco Leo, P. Mazzeo, P. Spagnolo
{"title":"基于传统数据集的深度学习性别分类评估","authors":"M. D. Coco, P. Carcagnì, Marco Leo, P. Mazzeo, P. Spagnolo","doi":"10.1109/AVSS.2016.7738061","DOIUrl":null,"url":null,"abstract":"Deep Learning has becoming a popular and effective way to address a large set of issues. In particular, in computer vision, it has been exploited to get satisfying recognition performance in unconstrained conditions. However, this wild race towards even better performance in extreme conditions has overshadowed an important step i.e. the assessment of the impact of this new methodology on traditional issues on which for years the researchers had worked. This is particularly true for biometrics applications where the evaluation of deep learning has been made directly on newest large and more challencing datasets. This lead to a pure data driven evaluation that makes difficult to analyze the relationships between network configurations, learning process and experienced outcomes. This paper tries to partially fill this gap by applying a DNN for gender recognition on the MORPH dataset and evaluating how a lower cardinality of examples used for learning can bias the recognition performance.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessment of deep learning for gender classification on traditional datasets\",\"authors\":\"M. D. Coco, P. Carcagnì, Marco Leo, P. Mazzeo, P. Spagnolo\",\"doi\":\"10.1109/AVSS.2016.7738061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning has becoming a popular and effective way to address a large set of issues. In particular, in computer vision, it has been exploited to get satisfying recognition performance in unconstrained conditions. However, this wild race towards even better performance in extreme conditions has overshadowed an important step i.e. the assessment of the impact of this new methodology on traditional issues on which for years the researchers had worked. This is particularly true for biometrics applications where the evaluation of deep learning has been made directly on newest large and more challencing datasets. This lead to a pure data driven evaluation that makes difficult to analyze the relationships between network configurations, learning process and experienced outcomes. This paper tries to partially fill this gap by applying a DNN for gender recognition on the MORPH dataset and evaluating how a lower cardinality of examples used for learning can bias the recognition performance.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习已经成为解决大量问题的一种流行而有效的方法。特别是在计算机视觉中,它已被用于在无约束条件下获得令人满意的识别性能。然而,这种在极端条件下追求更好表现的疯狂竞赛掩盖了重要的一步,即评估这种新方法对传统问题的影响,这是研究人员多年来一直在研究的。对于生物识别应用来说尤其如此,因为深度学习的评估是直接在最新的大型和更具挑战性的数据集上进行的。这导致了纯数据驱动的评估,使得很难分析网络配置、学习过程和经验结果之间的关系。本文试图通过在MORPH数据集上应用DNN进行性别识别来部分填补这一空白,并评估用于学习的样本基数较低如何影响识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of deep learning for gender classification on traditional datasets
Deep Learning has becoming a popular and effective way to address a large set of issues. In particular, in computer vision, it has been exploited to get satisfying recognition performance in unconstrained conditions. However, this wild race towards even better performance in extreme conditions has overshadowed an important step i.e. the assessment of the impact of this new methodology on traditional issues on which for years the researchers had worked. This is particularly true for biometrics applications where the evaluation of deep learning has been made directly on newest large and more challencing datasets. This lead to a pure data driven evaluation that makes difficult to analyze the relationships between network configurations, learning process and experienced outcomes. This paper tries to partially fill this gap by applying a DNN for gender recognition on the MORPH dataset and evaluating how a lower cardinality of examples used for learning can bias the recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信