基于学习的异构芯片多处理器可重构缓存

Furat Al-Obaidy, A. Asad, F. Mohammadi
{"title":"基于学习的异构芯片多处理器可重构缓存","authors":"Furat Al-Obaidy, A. Asad, F. Mohammadi","doi":"10.1109/CCECE47787.2020.9255748","DOIUrl":null,"url":null,"abstract":"In this work, a new energy-efficient reconfigurable cache architecture for chip multiprocessors is proposed. We formulate the reconfiguration problem based on using a machine learning technique. The proposed approach predicts the latency of the last-level cache in the next interval and then detects the type of it at runtime. This work provides a new approach that uses a neural network algorithm to reconfigure cache components. Experimental results show that the proposed design improves energy consumption of a three-dimensional chip multiprocessor with 16 cores by about 45% and performance by about 13% in compared to non-reconfigurable baselines.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Reconfigurable Cache for Heterogeneous Chip Multiprocessors\",\"authors\":\"Furat Al-Obaidy, A. Asad, F. Mohammadi\",\"doi\":\"10.1109/CCECE47787.2020.9255748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new energy-efficient reconfigurable cache architecture for chip multiprocessors is proposed. We formulate the reconfiguration problem based on using a machine learning technique. The proposed approach predicts the latency of the last-level cache in the next interval and then detects the type of it at runtime. This work provides a new approach that uses a neural network algorithm to reconfigure cache components. Experimental results show that the proposed design improves energy consumption of a three-dimensional chip multiprocessor with 16 cores by about 45% and performance by about 13% in compared to non-reconfigurable baselines.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高效节能的芯片多处理器可重构缓存结构。我们在使用机器学习技术的基础上提出了重构问题。该方法预测下一个时间间隔内最后一级缓存的延迟,然后在运行时检测其类型。这项工作提供了一种使用神经网络算法重新配置缓存组件的新方法。实验结果表明,与不可重构基准相比,该设计可将16核三维芯片多处理器的能耗提高约45%,性能提高约13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Reconfigurable Cache for Heterogeneous Chip Multiprocessors
In this work, a new energy-efficient reconfigurable cache architecture for chip multiprocessors is proposed. We formulate the reconfiguration problem based on using a machine learning technique. The proposed approach predicts the latency of the last-level cache in the next interval and then detects the type of it at runtime. This work provides a new approach that uses a neural network algorithm to reconfigure cache components. Experimental results show that the proposed design improves energy consumption of a three-dimensional chip multiprocessor with 16 cores by about 45% and performance by about 13% in compared to non-reconfigurable baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信