基于时空推理的气象公报自动生成

Hua-Ping Zhang, Huang Wu, Jian Gao, Yan-ping Zhao, Zhongliang Lv
{"title":"基于时空推理的气象公报自动生成","authors":"Hua-Ping Zhang, Huang Wu, Jian Gao, Yan-ping Zhao, Zhongliang Lv","doi":"10.1109/ICMLC.2011.6016952","DOIUrl":null,"url":null,"abstract":"Meteorological bulletin has more and more diversified, large scale, highly integrated requirements and potential demands from whole society. The strong professional efforts involved in transforming the variety of special meteorological data to natural language text are becoming more challenging in providing sophisticated and easily understood weather features. This paper presents a new Meteorological bulletin automatic generation method based on spatio-temporal reasoning. To enhance an exact and non-redundant description for complex meteorological data, and for special future tendency dynamics in emerged interesting areas. We also evaluate this method with real data from National Meteorological Center and prove that it's feasible and effective after implementing.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"11 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meteorological bulletin automatic generation based on spatio-temporal reasoning\",\"authors\":\"Hua-Ping Zhang, Huang Wu, Jian Gao, Yan-ping Zhao, Zhongliang Lv\",\"doi\":\"10.1109/ICMLC.2011.6016952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meteorological bulletin has more and more diversified, large scale, highly integrated requirements and potential demands from whole society. The strong professional efforts involved in transforming the variety of special meteorological data to natural language text are becoming more challenging in providing sophisticated and easily understood weather features. This paper presents a new Meteorological bulletin automatic generation method based on spatio-temporal reasoning. To enhance an exact and non-redundant description for complex meteorological data, and for special future tendency dynamics in emerged interesting areas. We also evaluate this method with real data from National Meteorological Center and prove that it's feasible and effective after implementing.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"11 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气象公报具有越来越多样化、规模化、高度综合化的需求和全社会的潜在需求。将各种特殊气象数据转换为自然语言文本的专业努力在提供复杂且易于理解的天气特征方面变得越来越具有挑战性。提出了一种基于时空推理的气象公报自动生成方法。增强对复杂气象数据的精确和非冗余描述,以及对新出现的有趣领域的特殊未来趋势动态的描述。并利用国家气象台的实际数据对该方法进行了评价,证明了该方法实施后的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meteorological bulletin automatic generation based on spatio-temporal reasoning
Meteorological bulletin has more and more diversified, large scale, highly integrated requirements and potential demands from whole society. The strong professional efforts involved in transforming the variety of special meteorological data to natural language text are becoming more challenging in providing sophisticated and easily understood weather features. This paper presents a new Meteorological bulletin automatic generation method based on spatio-temporal reasoning. To enhance an exact and non-redundant description for complex meteorological data, and for special future tendency dynamics in emerged interesting areas. We also evaluate this method with real data from National Meteorological Center and prove that it's feasible and effective after implementing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信