{"title":"一种摄像机自运动估计和场景结构同步恢复的视觉惯性方法","authors":"Dominik Aufderheide, W. Krybus","doi":"10.1109/VECIMS.2010.5609344","DOIUrl":null,"url":null,"abstract":"The estimation of a camera's egomotion is a highly desireable goal in many different application fields such as augmented reality (AR), visual navigation, robotics or entertainment. Especially for real-time modeling the former estimation of the camera trajectory is an elementary step towards the generation of three dimensional scene models. This paper presents a framework for simultaneous recovery of scene structure and camera motion by combining visual and inertial cues. For this purpose two different system designs are proposed: a loosely-coupled system and a monolithic design, which adapts ideas from non-linear state estimation as extended Kalman filtering (EKF) for structure and motion recovery.","PeriodicalId":326485,"journal":{"name":"2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A visual-inertial approach for camera egomotion estimation and simultaneous recovery of scene structure\",\"authors\":\"Dominik Aufderheide, W. Krybus\",\"doi\":\"10.1109/VECIMS.2010.5609344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of a camera's egomotion is a highly desireable goal in many different application fields such as augmented reality (AR), visual navigation, robotics or entertainment. Especially for real-time modeling the former estimation of the camera trajectory is an elementary step towards the generation of three dimensional scene models. This paper presents a framework for simultaneous recovery of scene structure and camera motion by combining visual and inertial cues. For this purpose two different system designs are proposed: a loosely-coupled system and a monolithic design, which adapts ideas from non-linear state estimation as extended Kalman filtering (EKF) for structure and motion recovery.\",\"PeriodicalId\":326485,\"journal\":{\"name\":\"2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VECIMS.2010.5609344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VECIMS.2010.5609344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A visual-inertial approach for camera egomotion estimation and simultaneous recovery of scene structure
The estimation of a camera's egomotion is a highly desireable goal in many different application fields such as augmented reality (AR), visual navigation, robotics or entertainment. Especially for real-time modeling the former estimation of the camera trajectory is an elementary step towards the generation of three dimensional scene models. This paper presents a framework for simultaneous recovery of scene structure and camera motion by combining visual and inertial cues. For this purpose two different system designs are proposed: a loosely-coupled system and a monolithic design, which adapts ideas from non-linear state estimation as extended Kalman filtering (EKF) for structure and motion recovery.