Yanying Lin, Kejiang Ye, Ming Chen, Naitian Deng, Tailin Wu, Chengzhong Xu
{"title":"基于线性贝叶斯神经网络的核心电信网状态变化感知","authors":"Yanying Lin, Kejiang Ye, Ming Chen, Naitian Deng, Tailin Wu, Chengzhong Xu","doi":"10.1109/ICPADS51040.2020.00020","DOIUrl":null,"url":null,"abstract":"The core network is the most basic facility in the entire telecommunications network, which is consists of large number of routers, switches and firewalls. Network management like re-planning routes or adjusting policies is very important to avoid failures. However, the timing of intervention is very challenging. Too early intervention will incur unnecessary overheads, and too late intervention will cause serious disaster. In this paper, we analyzed a large data set from a real-world core telecommunications network and proposed Linear Bayesian Neural Networks (LBNN)11Code available at https://github.com/YanyingLin/Lbnn to perceive the core network state changes and make decisions about network intervention. In particular, we considered three aspects of complexity, including the weight of the mutual effect between devices, the dependence on the time dimension of the network states, and the randomness of the network state changes. The entire model is extended to a probability model based on the Bayesian framework to better capture the randomness and variability of the data. Experimental results on real-world data set show that LBNN achieves very high detection accuracy, with an average of 92.1%.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LBNN: Perceiving the State Changes of a Core Telecommunications Network via Linear Bayesian Neural Network\",\"authors\":\"Yanying Lin, Kejiang Ye, Ming Chen, Naitian Deng, Tailin Wu, Chengzhong Xu\",\"doi\":\"10.1109/ICPADS51040.2020.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The core network is the most basic facility in the entire telecommunications network, which is consists of large number of routers, switches and firewalls. Network management like re-planning routes or adjusting policies is very important to avoid failures. However, the timing of intervention is very challenging. Too early intervention will incur unnecessary overheads, and too late intervention will cause serious disaster. In this paper, we analyzed a large data set from a real-world core telecommunications network and proposed Linear Bayesian Neural Networks (LBNN)11Code available at https://github.com/YanyingLin/Lbnn to perceive the core network state changes and make decisions about network intervention. In particular, we considered three aspects of complexity, including the weight of the mutual effect between devices, the dependence on the time dimension of the network states, and the randomness of the network state changes. The entire model is extended to a probability model based on the Bayesian framework to better capture the randomness and variability of the data. Experimental results on real-world data set show that LBNN achieves very high detection accuracy, with an average of 92.1%.\",\"PeriodicalId\":196548,\"journal\":{\"name\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS51040.2020.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LBNN: Perceiving the State Changes of a Core Telecommunications Network via Linear Bayesian Neural Network
The core network is the most basic facility in the entire telecommunications network, which is consists of large number of routers, switches and firewalls. Network management like re-planning routes or adjusting policies is very important to avoid failures. However, the timing of intervention is very challenging. Too early intervention will incur unnecessary overheads, and too late intervention will cause serious disaster. In this paper, we analyzed a large data set from a real-world core telecommunications network and proposed Linear Bayesian Neural Networks (LBNN)11Code available at https://github.com/YanyingLin/Lbnn to perceive the core network state changes and make decisions about network intervention. In particular, we considered three aspects of complexity, including the weight of the mutual effect between devices, the dependence on the time dimension of the network states, and the randomness of the network state changes. The entire model is extended to a probability model based on the Bayesian framework to better capture the randomness and variability of the data. Experimental results on real-world data set show that LBNN achieves very high detection accuracy, with an average of 92.1%.