{"title":"公式","authors":"Norton J. Lapeyrouse","doi":"10.1142/9789811207662_0003","DOIUrl":null,"url":null,"abstract":"I want to recall some formulas which are used in the Maple/Sage scripts hodge.maple and hodge.sage avalable in http://www.math.purdue.edu/∼dvb/scripts/readme.html Given a smooth projective variety X, the ith Betti number bi(X) = dim H(X, Q) if it’s defined over C, and dim H(Xet, Q`) in general. The pqth Hodge number h(X) = dim H(X, ΩpX). These can be assembled into generating functions called the Poincaré and Hodge-Poincaré polynomials","PeriodicalId":433230,"journal":{"name":"Choreographing From Within","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Formulas\",\"authors\":\"Norton J. Lapeyrouse\",\"doi\":\"10.1142/9789811207662_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I want to recall some formulas which are used in the Maple/Sage scripts hodge.maple and hodge.sage avalable in http://www.math.purdue.edu/∼dvb/scripts/readme.html Given a smooth projective variety X, the ith Betti number bi(X) = dim H(X, Q) if it’s defined over C, and dim H(Xet, Q`) in general. The pqth Hodge number h(X) = dim H(X, ΩpX). These can be assembled into generating functions called the Poincaré and Hodge-Poincaré polynomials\",\"PeriodicalId\":433230,\"journal\":{\"name\":\"Choreographing From Within\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Choreographing From Within\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811207662_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Choreographing From Within","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811207662_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
摘要
我想回忆一下Maple/Sage脚本中使用的一些公式。枫树和霍奇。给定一个光滑的投影变量X,第i个Betti数bi(X) = dim H(X, Q),如果它定义在C上,则通常为dim H(Xet, Q ')。第四个霍奇数h(X) = dim h(X, ΩpX)。这些可以组合成生成函数,称为庞卡罗多项式和霍奇-庞卡罗多项式
I want to recall some formulas which are used in the Maple/Sage scripts hodge.maple and hodge.sage avalable in http://www.math.purdue.edu/∼dvb/scripts/readme.html Given a smooth projective variety X, the ith Betti number bi(X) = dim H(X, Q) if it’s defined over C, and dim H(Xet, Q`) in general. The pqth Hodge number h(X) = dim H(X, ΩpX). These can be assembled into generating functions called the Poincaré and Hodge-Poincaré polynomials