无人水面机器人的自动驾驶仪设计

Zhouhua Peng, Yong Tian, Dan Wang, Lu Liu
{"title":"无人水面机器人的自动驾驶仪设计","authors":"Zhouhua Peng, Yong Tian, Dan Wang, Lu Liu","doi":"10.1109/CHICC.2015.7260597","DOIUrl":null,"url":null,"abstract":"This paper reports an autopilot design for a robotic unmanned surface vehicle in the control laboratory at DMU. A robust adaptive steering law is developed with the aid of a predictor, a tracking differentiator, neural networks, and a dynamic surface control technique. The developed controller is able to achieve satisfactory performance in the presence of model uncertainties, time-varying ocean disturbances, and measurement noises. Simulation results demonstrate the efficacy of the proposed method.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Autopilot design for a robotic unmanned surface vehicle\",\"authors\":\"Zhouhua Peng, Yong Tian, Dan Wang, Lu Liu\",\"doi\":\"10.1109/CHICC.2015.7260597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an autopilot design for a robotic unmanned surface vehicle in the control laboratory at DMU. A robust adaptive steering law is developed with the aid of a predictor, a tracking differentiator, neural networks, and a dynamic surface control technique. The developed controller is able to achieve satisfactory performance in the presence of model uncertainties, time-varying ocean disturbances, and measurement noises. Simulation results demonstrate the efficacy of the proposed method.\",\"PeriodicalId\":421276,\"journal\":{\"name\":\"2015 34th Chinese Control Conference (CCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 34th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2015.7260597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文报道了DMU控制实验室中无人水面机器人的自动驾驶仪设计。利用预测器、跟踪微分器、神经网络和动态曲面控制技术,建立了鲁棒自适应转向律。该控制器在存在模型不确定性、时变海洋扰动和测量噪声的情况下仍能取得满意的控制效果。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autopilot design for a robotic unmanned surface vehicle
This paper reports an autopilot design for a robotic unmanned surface vehicle in the control laboratory at DMU. A robust adaptive steering law is developed with the aid of a predictor, a tracking differentiator, neural networks, and a dynamic surface control technique. The developed controller is able to achieve satisfactory performance in the presence of model uncertainties, time-varying ocean disturbances, and measurement noises. Simulation results demonstrate the efficacy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信