小置扬声器验证系统中PLDA与传统PLDA混合系统的性能评价

Qianhui Wan, M. Bouchard
{"title":"小置扬声器验证系统中PLDA与传统PLDA混合系统的性能评价","authors":"Qianhui Wan, M. Bouchard","doi":"10.1109/CCECE.2017.7946645","DOIUrl":null,"url":null,"abstract":"This paper compares the use of signal to noise ratio (SNR)-dependent and SNR-independent mixtures of probabilistic linear discriminant analysis (PLDA) versus conventional PLDA, under multi-noise and multi-SNR conditions for a small-set speaker verification system. Results indicate that conventional PLDA is more robust under multi-SNR conditions. The effect of the testing speech length is also examined and speech signals with a length of 5 seconds were found to achieve acceptable results.","PeriodicalId":238720,"journal":{"name":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of mixtures of PLDA and conventional PLDA for a small-set speaker verification system\",\"authors\":\"Qianhui Wan, M. Bouchard\",\"doi\":\"10.1109/CCECE.2017.7946645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares the use of signal to noise ratio (SNR)-dependent and SNR-independent mixtures of probabilistic linear discriminant analysis (PLDA) versus conventional PLDA, under multi-noise and multi-SNR conditions for a small-set speaker verification system. Results indicate that conventional PLDA is more robust under multi-SNR conditions. The effect of the testing speech length is also examined and speech signals with a length of 5 seconds were found to achieve acceptable results.\",\"PeriodicalId\":238720,\"journal\":{\"name\":\"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2017.7946645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2017.7946645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了在多噪声和多信噪比条件下使用信噪比相关和信噪比无关的混合概率线性判别分析(PLDA)与传统PLDA在小集扬声器验证系统中的应用。结果表明,在多信噪比条件下,传统PLDA具有更好的鲁棒性。对测试语音长度的影响进行了研究,发现长度为5秒的语音信号达到了可接受的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of mixtures of PLDA and conventional PLDA for a small-set speaker verification system
This paper compares the use of signal to noise ratio (SNR)-dependent and SNR-independent mixtures of probabilistic linear discriminant analysis (PLDA) versus conventional PLDA, under multi-noise and multi-SNR conditions for a small-set speaker verification system. Results indicate that conventional PLDA is more robust under multi-SNR conditions. The effect of the testing speech length is also examined and speech signals with a length of 5 seconds were found to achieve acceptable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信