{"title":"一种多语义环境下的语义增强方法","authors":"Zhiwei Zhan, Guoliang Liao, Xiang Ren, Guangsi Xiong, Weilin Zhou, Wenchao Jiang, Hong Xiao","doi":"10.4018/ijssci.311446","DOIUrl":null,"url":null,"abstract":"Emotion is a feeling that can be expressed by different mediums. Emotion analysis is a key task in NLP which is responsible for judging the emotional tendency of texts. Currently, in a complex multi-semantic environment, it still suffers from poor performance. Traditional methods usually require human intervention, while deep learning always has a trade-off between local and global features. To solve the problem that deep learning models generalize poorly for emotion analysis, this article proposed a semantic-enhanced method called RA-CNN, a classification model under a multi-semantic environment. It integrates CNN for local feature extraction, RNN for global feature extraction, and attention mechanism for feature scaling. As a result, it can acquire the correct meaning of sentences. After experimenting with the hotel review dataset, it has an improvement in positive feeling classification compared with the baseline model (3%~13%), and it showed a competitive performance compared with ordinary deep learning models (~1%). On negative feeling classification, it also performed well close to other models.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RA-CNN: A Semantic-Enhanced Method in a Multi-Semantic Environment\",\"authors\":\"Zhiwei Zhan, Guoliang Liao, Xiang Ren, Guangsi Xiong, Weilin Zhou, Wenchao Jiang, Hong Xiao\",\"doi\":\"10.4018/ijssci.311446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion is a feeling that can be expressed by different mediums. Emotion analysis is a key task in NLP which is responsible for judging the emotional tendency of texts. Currently, in a complex multi-semantic environment, it still suffers from poor performance. Traditional methods usually require human intervention, while deep learning always has a trade-off between local and global features. To solve the problem that deep learning models generalize poorly for emotion analysis, this article proposed a semantic-enhanced method called RA-CNN, a classification model under a multi-semantic environment. It integrates CNN for local feature extraction, RNN for global feature extraction, and attention mechanism for feature scaling. As a result, it can acquire the correct meaning of sentences. After experimenting with the hotel review dataset, it has an improvement in positive feeling classification compared with the baseline model (3%~13%), and it showed a competitive performance compared with ordinary deep learning models (~1%). On negative feeling classification, it also performed well close to other models.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.311446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.311446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RA-CNN: A Semantic-Enhanced Method in a Multi-Semantic Environment
Emotion is a feeling that can be expressed by different mediums. Emotion analysis is a key task in NLP which is responsible for judging the emotional tendency of texts. Currently, in a complex multi-semantic environment, it still suffers from poor performance. Traditional methods usually require human intervention, while deep learning always has a trade-off between local and global features. To solve the problem that deep learning models generalize poorly for emotion analysis, this article proposed a semantic-enhanced method called RA-CNN, a classification model under a multi-semantic environment. It integrates CNN for local feature extraction, RNN for global feature extraction, and attention mechanism for feature scaling. As a result, it can acquire the correct meaning of sentences. After experimenting with the hotel review dataset, it has an improvement in positive feeling classification compared with the baseline model (3%~13%), and it showed a competitive performance compared with ordinary deep learning models (~1%). On negative feeling classification, it also performed well close to other models.