{"title":"基于速度障碍的两连杆平面机械臂轨迹规划","authors":"Federico Vesentini, Riccardo Muradore","doi":"10.23919/ecc54610.2021.9655184","DOIUrl":null,"url":null,"abstract":"Velocity Obstacle paradigm is one of the most popular and studied decentralized trajectory planning methods for multi-agent systems moving in dynamic environments. It has been successfully used in a multitude of real and simulated scenarios for the collision-free maneuver of ground or aerial mobile robots. In this paper we address the problem of adapting Velocity Obstacles to provide collision-free trajectories also for robotic manipulators with dynamic obstacles in their workspace. Simulation results show the effectiveness of the proposed approach.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Velocity Obstacle-based Trajectory Planner for Two-Link Planar Manipulators\",\"authors\":\"Federico Vesentini, Riccardo Muradore\",\"doi\":\"10.23919/ecc54610.2021.9655184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Velocity Obstacle paradigm is one of the most popular and studied decentralized trajectory planning methods for multi-agent systems moving in dynamic environments. It has been successfully used in a multitude of real and simulated scenarios for the collision-free maneuver of ground or aerial mobile robots. In this paper we address the problem of adapting Velocity Obstacles to provide collision-free trajectories also for robotic manipulators with dynamic obstacles in their workspace. Simulation results show the effectiveness of the proposed approach.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9655184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9655184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity Obstacle-based Trajectory Planner for Two-Link Planar Manipulators
Velocity Obstacle paradigm is one of the most popular and studied decentralized trajectory planning methods for multi-agent systems moving in dynamic environments. It has been successfully used in a multitude of real and simulated scenarios for the collision-free maneuver of ground or aerial mobile robots. In this paper we address the problem of adapting Velocity Obstacles to provide collision-free trajectories also for robotic manipulators with dynamic obstacles in their workspace. Simulation results show the effectiveness of the proposed approach.