{"title":"订单制造中基于agent的动态订单接受策略","authors":"Juan Hao, Jianjun Yu","doi":"10.1109/ICCIS.2012.60","DOIUrl":null,"url":null,"abstract":"Order acceptance is a key success factor in make-to-order (MTO) manufacturing firms. In this work, in order to maximize average revenue in an infinite planning horizon, we use dynamic programming to model the order acceptance problem, and solve it with reinforcement learning approach. A novel approach for simulation-based development for dynamic order acceptance using average-reward reinforcement learning is proposed. Through the simulation, an intelligent decision policy to dynamically control the coming orders is learned by the agent. Comparisons made with First-Come-First-Serve (FCFS) highlight the effectiveness of the proposed novel approach to maximize the average revenue.","PeriodicalId":269967,"journal":{"name":"2012 Fourth International Conference on Computational and Information Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agent-Based Dynamic Order Acceptance Policy in Make-to-Order Manufacturing\",\"authors\":\"Juan Hao, Jianjun Yu\",\"doi\":\"10.1109/ICCIS.2012.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Order acceptance is a key success factor in make-to-order (MTO) manufacturing firms. In this work, in order to maximize average revenue in an infinite planning horizon, we use dynamic programming to model the order acceptance problem, and solve it with reinforcement learning approach. A novel approach for simulation-based development for dynamic order acceptance using average-reward reinforcement learning is proposed. Through the simulation, an intelligent decision policy to dynamically control the coming orders is learned by the agent. Comparisons made with First-Come-First-Serve (FCFS) highlight the effectiveness of the proposed novel approach to maximize the average revenue.\",\"PeriodicalId\":269967,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2012.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2012.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agent-Based Dynamic Order Acceptance Policy in Make-to-Order Manufacturing
Order acceptance is a key success factor in make-to-order (MTO) manufacturing firms. In this work, in order to maximize average revenue in an infinite planning horizon, we use dynamic programming to model the order acceptance problem, and solve it with reinforcement learning approach. A novel approach for simulation-based development for dynamic order acceptance using average-reward reinforcement learning is proposed. Through the simulation, an intelligent decision policy to dynamically control the coming orders is learned by the agent. Comparisons made with First-Come-First-Serve (FCFS) highlight the effectiveness of the proposed novel approach to maximize the average revenue.