用于间接免疫荧光图像分类的生物启发密集局部描述子

Diego Gragnaniello, Carlo Sansone, L. Verdoliva
{"title":"用于间接免疫荧光图像分类的生物启发密集局部描述子","authors":"Diego Gragnaniello, Carlo Sansone, L. Verdoliva","doi":"10.1109/I3A.WORKSHOP.2014.18","DOIUrl":null,"url":null,"abstract":"This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification\",\"authors\":\"Diego Gragnaniello, Carlo Sansone, L. Verdoliva\",\"doi\":\"10.1109/I3A.WORKSHOP.2014.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.\",\"PeriodicalId\":103785,\"journal\":{\"name\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I3A.WORKSHOP.2014.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.WORKSHOP.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本工作涉及设计一种从间接免疫荧光图像中提取细胞的分类方法。特别是,我们建议使用密集的局部描述符不变量来缩放变化和旋转,以便对细胞的六种染色模式进行分类。该描述符能够给出紧凑的判别表示,并将对数极坐标采样与空间变化的高斯平滑相结合,应用于特定方向的梯度图像。最后使用Bag of Words进行分类,实验结果显示了很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification
This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信