基于期望传播的海量MIMO系统块稀疏信道估计

M. Rashid, M. Naraghi-Pour
{"title":"基于期望传播的海量MIMO系统块稀疏信道估计","authors":"M. Rashid, M. Naraghi-Pour","doi":"10.1109/GLOBECOM46510.2021.9685633","DOIUrl":null,"url":null,"abstract":"We consider downlink channel estimation in massive multiple input multiple output (MIMO) systems using a Bayesian compressive sensing (BCS) approach. BCS exploits the sparse structure of the channel in the angular domain in order to reduce the pilot overhead. Due to limited local scattering, the massive MIMO channel has a block-sparse representation in the angular domain. Thus, we use a conditionally independent and identically distributed spike-and-slab prior to model the sparse vector coefficients representing the channel and a Markov prior to model its support. An expectation propagation (EP) algorithm is developed to approximate the intractable joint posterior distribution on the sparse vector and its support with a distribution from an exponential family. The unknown model parameters which are required by EP, are estimated using the expectation maximization (EM) algorithm. The proposed combination of EM and EP algorithms is reminiscent of variational EM and is referred to as EM-EP. The approximated distribution is then used for estimating the massive MIMO channel. Simulation results show that our proposed EM-EP algorithm outperforms several recently-proposed algorithms in channel estimation.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Block-Sparse Channel Estimation in Massive MIMO Systems by Expectation Propagation\",\"authors\":\"M. Rashid, M. Naraghi-Pour\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider downlink channel estimation in massive multiple input multiple output (MIMO) systems using a Bayesian compressive sensing (BCS) approach. BCS exploits the sparse structure of the channel in the angular domain in order to reduce the pilot overhead. Due to limited local scattering, the massive MIMO channel has a block-sparse representation in the angular domain. Thus, we use a conditionally independent and identically distributed spike-and-slab prior to model the sparse vector coefficients representing the channel and a Markov prior to model its support. An expectation propagation (EP) algorithm is developed to approximate the intractable joint posterior distribution on the sparse vector and its support with a distribution from an exponential family. The unknown model parameters which are required by EP, are estimated using the expectation maximization (EM) algorithm. The proposed combination of EM and EP algorithms is reminiscent of variational EM and is referred to as EM-EP. The approximated distribution is then used for estimating the massive MIMO channel. Simulation results show that our proposed EM-EP algorithm outperforms several recently-proposed algorithms in channel estimation.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑使用贝叶斯压缩感知(BCS)方法在大规模多输入多输出(MIMO)系统中进行下行信道估计。BCS利用信道在角域的稀疏结构来减少导频开销。由于有限的局部散射,大规模MIMO信道在角域具有块稀疏表示。因此,我们使用条件独立且分布相同的spike-and-slab先验模型来表示通道的稀疏向量系数,并使用马尔可夫先验模型来表示其支持。提出了一种期望传播(EP)算法,用指数族分布逼近稀疏向量及其支持上的难治性关节后向分布。利用期望最大化(EM)算法估计EP所需的未知模型参数。提出的EM和EP算法的组合让人想起变分EM,被称为EM-EP。该近似分布用于估计大规模MIMO信道。仿真结果表明,本文提出的EM-EP算法在信道估计方面优于最近提出的几种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-Sparse Channel Estimation in Massive MIMO Systems by Expectation Propagation
We consider downlink channel estimation in massive multiple input multiple output (MIMO) systems using a Bayesian compressive sensing (BCS) approach. BCS exploits the sparse structure of the channel in the angular domain in order to reduce the pilot overhead. Due to limited local scattering, the massive MIMO channel has a block-sparse representation in the angular domain. Thus, we use a conditionally independent and identically distributed spike-and-slab prior to model the sparse vector coefficients representing the channel and a Markov prior to model its support. An expectation propagation (EP) algorithm is developed to approximate the intractable joint posterior distribution on the sparse vector and its support with a distribution from an exponential family. The unknown model parameters which are required by EP, are estimated using the expectation maximization (EM) algorithm. The proposed combination of EM and EP algorithms is reminiscent of variational EM and is referred to as EM-EP. The approximated distribution is then used for estimating the massive MIMO channel. Simulation results show that our proposed EM-EP algorithm outperforms several recently-proposed algorithms in channel estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信