基于医疗物联网的心律失常自动检测循环模型

Waleed Abd Elkhalik
{"title":"基于医疗物联网的心律失常自动检测循环模型","authors":"Waleed Abd Elkhalik","doi":"10.54216/jisiot.020104","DOIUrl":null,"url":null,"abstract":"With the growing prevalence of the Internet of Health Things (IoHT), there is an increasing need for reliable and precise categorization of electrocardiogram (ECG) indications for the early detection of cardiovascular diseases. In this research, we propose a machine learning approach for ECG classification in IoHT applications. Our solution use wavelet transforms to clean the ECG records before passing them to the model. Then, a stack of long short-term memory (LSTM) cells is built to learn the temporal interrelations in the ECG signals and make accurate predictions. We assessed the performance of our model on a publicly available dataset of ECG signals, achieving an overall accuracy of 97.5%. The experimental findings demonstrate that our models can effectively classify ECG signals in IoHT applications, providing a valuable tool for the early discovery of vascular diseases. Furthermore, our model can be certainly incorporated into IoHT systems, providing a reliable and efficient solution for ECG classification.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things\",\"authors\":\"Waleed Abd Elkhalik\",\"doi\":\"10.54216/jisiot.020104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing prevalence of the Internet of Health Things (IoHT), there is an increasing need for reliable and precise categorization of electrocardiogram (ECG) indications for the early detection of cardiovascular diseases. In this research, we propose a machine learning approach for ECG classification in IoHT applications. Our solution use wavelet transforms to clean the ECG records before passing them to the model. Then, a stack of long short-term memory (LSTM) cells is built to learn the temporal interrelations in the ECG signals and make accurate predictions. We assessed the performance of our model on a publicly available dataset of ECG signals, achieving an overall accuracy of 97.5%. The experimental findings demonstrate that our models can effectively classify ECG signals in IoHT applications, providing a valuable tool for the early discovery of vascular diseases. Furthermore, our model can be certainly incorporated into IoHT systems, providing a reliable and efficient solution for ECG classification.\",\"PeriodicalId\":122556,\"journal\":{\"name\":\"Journal of Intelligent Systems and Internet of Things\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jisiot.020104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.020104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着健康物联网(IoHT)的日益普及,越来越需要可靠和精确的心电图(ECG)适应症分类,以便早期发现心血管疾病。在这项研究中,我们提出了一种用于IoHT应用中心电分类的机器学习方法。我们的解决方案使用小波变换在将心电记录传递给模型之前对其进行清洗。然后,构建长短期记忆(LSTM)细胞堆栈,学习心电信号的时间相互关系,并做出准确的预测。我们在公开可用的心电信号数据集上评估了我们的模型的性能,达到了97.5%的总体精度。实验结果表明,我们的模型可以有效地对IoHT应用中的心电信号进行分类,为血管疾病的早期发现提供了有价值的工具。此外,我们的模型可以应用到IoHT系统中,为心电分类提供了一种可靠、高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent Model for Automatic Detection Cardiac Arrhythmia on the Internet of Healthcare Things
With the growing prevalence of the Internet of Health Things (IoHT), there is an increasing need for reliable and precise categorization of electrocardiogram (ECG) indications for the early detection of cardiovascular diseases. In this research, we propose a machine learning approach for ECG classification in IoHT applications. Our solution use wavelet transforms to clean the ECG records before passing them to the model. Then, a stack of long short-term memory (LSTM) cells is built to learn the temporal interrelations in the ECG signals and make accurate predictions. We assessed the performance of our model on a publicly available dataset of ECG signals, achieving an overall accuracy of 97.5%. The experimental findings demonstrate that our models can effectively classify ECG signals in IoHT applications, providing a valuable tool for the early discovery of vascular diseases. Furthermore, our model can be certainly incorporated into IoHT systems, providing a reliable and efficient solution for ECG classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信