一种基于多模干涉的全硅集成光传感器

A. Irace, G. Breglio
{"title":"一种基于多模干涉的全硅集成光传感器","authors":"A. Irace, G. Breglio","doi":"10.1109/ICSENS.2003.1278899","DOIUrl":null,"url":null,"abstract":"Temperature sensing with optical devices is a very promising research field because of many attractive features common to all-optical sensing schemes. All-silicon integrated sensors have many interesting features from their inherent low processing cost to integrability with signal-processing electronics. In this paper, we present a novel approach to temperature sensing with optoelectronic devices which relies on the usage of bare silicon as the transducing material. The device is composed by a single mode input waveguide, an MMI region where the higher order modes are allowed to propagate and two output waveguides. The refractive index variation in the MMI section due to temperature shifts induces different phase velocities of the propagating modes. Analytical calculations are presented together with BPM simulations aimed to the maximization of the sensitivity of the sensor.","PeriodicalId":369277,"journal":{"name":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An all-silicon integrated optical sensor based on multi-mode interference\",\"authors\":\"A. Irace, G. Breglio\",\"doi\":\"10.1109/ICSENS.2003.1278899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature sensing with optical devices is a very promising research field because of many attractive features common to all-optical sensing schemes. All-silicon integrated sensors have many interesting features from their inherent low processing cost to integrability with signal-processing electronics. In this paper, we present a novel approach to temperature sensing with optoelectronic devices which relies on the usage of bare silicon as the transducing material. The device is composed by a single mode input waveguide, an MMI region where the higher order modes are allowed to propagate and two output waveguides. The refractive index variation in the MMI section due to temperature shifts induces different phase velocities of the propagating modes. Analytical calculations are presented together with BPM simulations aimed to the maximization of the sensitivity of the sensor.\",\"PeriodicalId\":369277,\"journal\":{\"name\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2003.1278899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2003.1278899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于光学器件的温度传感是一个非常有前途的研究领域,因为全光传感方案具有许多吸引人的特性。从其固有的低处理成本到与信号处理电子器件的可集成性,全硅集成传感器具有许多有趣的特点。在本文中,我们提出了一种利用裸硅作为换能器材料的光电器件进行温度传感的新方法。该器件由单模输入波导、允许传播高阶模式的MMI区域和两个输出波导组成。由于温度的变化,MMI截面的折射率变化导致了传播模式的不同相速度。分析计算和BPM仿真旨在最大限度地提高传感器的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An all-silicon integrated optical sensor based on multi-mode interference
Temperature sensing with optical devices is a very promising research field because of many attractive features common to all-optical sensing schemes. All-silicon integrated sensors have many interesting features from their inherent low processing cost to integrability with signal-processing electronics. In this paper, we present a novel approach to temperature sensing with optoelectronic devices which relies on the usage of bare silicon as the transducing material. The device is composed by a single mode input waveguide, an MMI region where the higher order modes are allowed to propagate and two output waveguides. The refractive index variation in the MMI section due to temperature shifts induces different phase velocities of the propagating modes. Analytical calculations are presented together with BPM simulations aimed to the maximization of the sensitivity of the sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信