基于神经网络降维的心电多级小波分类

R. V. Andreão, B. Dorizzi, P. C. Cortez, J. Mota
{"title":"基于神经网络降维的心电多级小波分类","authors":"R. V. Andreão, B. Dorizzi, P. C. Cortez, J. Mota","doi":"10.1109/NNSP.2002.1030051","DOIUrl":null,"url":null,"abstract":"In this article, we explore the use of a unique type of wavelets for ECG beat detection and classification. Once the different beats are segmented, classification is performed using at the input of a neural network different wavelet scales. This improves the noise resistance and allows a better representation of the different morphologies. The results, evaluated on the MIT/BIH database, are excellent (97.69% on the normal and PVC classes) thanks to the use of a regularization technique.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Efficient ECG multi-level wavelet classification through neural network dimensionality reduction\",\"authors\":\"R. V. Andreão, B. Dorizzi, P. C. Cortez, J. Mota\",\"doi\":\"10.1109/NNSP.2002.1030051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we explore the use of a unique type of wavelets for ECG beat detection and classification. Once the different beats are segmented, classification is performed using at the input of a neural network different wavelet scales. This improves the noise resistance and allows a better representation of the different morphologies. The results, evaluated on the MIT/BIH database, are excellent (97.69% on the normal and PVC classes) thanks to the use of a regularization technique.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们探索了一种独特类型的小波用于心电心跳检测和分类。一旦不同的节拍被分割,在神经网络的输入处使用不同的小波尺度进行分类。这提高了抗噪声性,并允许更好地表示不同的形态。结果,在MIT/BIH数据库上进行评估,由于使用了正则化技术,结果非常好(97.69%在正常和PVC类别上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient ECG multi-level wavelet classification through neural network dimensionality reduction
In this article, we explore the use of a unique type of wavelets for ECG beat detection and classification. Once the different beats are segmented, classification is performed using at the input of a neural network different wavelet scales. This improves the noise resistance and allows a better representation of the different morphologies. The results, evaluated on the MIT/BIH database, are excellent (97.69% on the normal and PVC classes) thanks to the use of a regularization technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信