A. Steijlen, J. Bastemeijer, K. Jansen, P. French, A. Bossche
{"title":"采用低成本制造技术制造的新型汗率和电导率传感器贴片","authors":"A. Steijlen, J. Bastemeijer, K. Jansen, P. French, A. Bossche","doi":"10.1109/SENSORS47125.2020.9278850","DOIUrl":null,"url":null,"abstract":"Sweat sensor patches offer new opportunities for unobtrusive monitoring of an athlete’s physical status. This paper presents a novel sweat rate and sweat conductivity patch that is easy to prototype and can be made with common low-cost production techniques: laser cutting and standard printed circuit board (PCB) manufacturing. The device consists of a patch made from hydrophilic PET foil, a double-sided adhesive and a thin PCB with gold electrodes. Two electrodes, which are continuously in contact with the inflowing fluid, measure the sweat conductivity and a separate system with interdigitated electrodes measures the filling process of the reservoirs. Impedance measurement results of both systems demonstrate the working of the concept.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel sweat rate and conductivity sensor patch made with low-cost fabrication techniques\",\"authors\":\"A. Steijlen, J. Bastemeijer, K. Jansen, P. French, A. Bossche\",\"doi\":\"10.1109/SENSORS47125.2020.9278850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sweat sensor patches offer new opportunities for unobtrusive monitoring of an athlete’s physical status. This paper presents a novel sweat rate and sweat conductivity patch that is easy to prototype and can be made with common low-cost production techniques: laser cutting and standard printed circuit board (PCB) manufacturing. The device consists of a patch made from hydrophilic PET foil, a double-sided adhesive and a thin PCB with gold electrodes. Two electrodes, which are continuously in contact with the inflowing fluid, measure the sweat conductivity and a separate system with interdigitated electrodes measures the filling process of the reservoirs. Impedance measurement results of both systems demonstrate the working of the concept.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel sweat rate and conductivity sensor patch made with low-cost fabrication techniques
Sweat sensor patches offer new opportunities for unobtrusive monitoring of an athlete’s physical status. This paper presents a novel sweat rate and sweat conductivity patch that is easy to prototype and can be made with common low-cost production techniques: laser cutting and standard printed circuit board (PCB) manufacturing. The device consists of a patch made from hydrophilic PET foil, a double-sided adhesive and a thin PCB with gold electrodes. Two electrodes, which are continuously in contact with the inflowing fluid, measure the sweat conductivity and a separate system with interdigitated electrodes measures the filling process of the reservoirs. Impedance measurement results of both systems demonstrate the working of the concept.