{"title":"精英数量对遗传算法行为影响的分析:一个视角","authors":"Apoorva Mishra, A. Shukla","doi":"10.1109/IACC.2017.0172","DOIUrl":null,"url":null,"abstract":"Various parameters affect the performance of Genetic Algorithms in terms of the accuracy of the optimal solution achieved and convergence rate. In this paper, effect of one such important parameter (elite count) on the behavior of Genetic Algorithms is meticulously analyzed, A standard benchmark function 'Rastrigin's Function' is used for the purpose of the study, and the results indicate that the extremely high values of elite count result in premature convergence on local minima, while low values of elite count result in much better solutions, near to the global optima.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of the Effect of Elite Count on the Behavior of Genetic Algorithms: A Perspective\",\"authors\":\"Apoorva Mishra, A. Shukla\",\"doi\":\"10.1109/IACC.2017.0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various parameters affect the performance of Genetic Algorithms in terms of the accuracy of the optimal solution achieved and convergence rate. In this paper, effect of one such important parameter (elite count) on the behavior of Genetic Algorithms is meticulously analyzed, A standard benchmark function 'Rastrigin's Function' is used for the purpose of the study, and the results indicate that the extremely high values of elite count result in premature convergence on local minima, while low values of elite count result in much better solutions, near to the global optima.\",\"PeriodicalId\":248433,\"journal\":{\"name\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACC.2017.0172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the Effect of Elite Count on the Behavior of Genetic Algorithms: A Perspective
Various parameters affect the performance of Genetic Algorithms in terms of the accuracy of the optimal solution achieved and convergence rate. In this paper, effect of one such important parameter (elite count) on the behavior of Genetic Algorithms is meticulously analyzed, A standard benchmark function 'Rastrigin's Function' is used for the purpose of the study, and the results indicate that the extremely high values of elite count result in premature convergence on local minima, while low values of elite count result in much better solutions, near to the global optima.