{"title":"用机器学习方法检测网络异常","authors":"İhsan Rıza Kara, A. Varol","doi":"10.1109/ISDFS55398.2022.9800814","DOIUrl":null,"url":null,"abstract":"The present study, aimed to detect cyber-attacks, and unexpected access requests on devices in the telecommunication networks, enabling the necessary measures to be taken early. With K-Nearest Neighbors (KNN) and Naive Bayes machine learning methods, predicted whether the raw data packets contain cyber-attack according to different properties of these packets using the UNSW-NB15 dataset. KNN algorithms with different K values and the Naive Bayes method were compared according to accuracy rates and the results were given in the table. As a result, changes in accuracy rates were observed according to different k neighbor values in the KNN algorithm. Higher accuracy rates than Naive Bayes were achieved in the models created with the KNN algorithm.","PeriodicalId":114335,"journal":{"name":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Network Anomalies with Machine Learning Methods\",\"authors\":\"İhsan Rıza Kara, A. Varol\",\"doi\":\"10.1109/ISDFS55398.2022.9800814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study, aimed to detect cyber-attacks, and unexpected access requests on devices in the telecommunication networks, enabling the necessary measures to be taken early. With K-Nearest Neighbors (KNN) and Naive Bayes machine learning methods, predicted whether the raw data packets contain cyber-attack according to different properties of these packets using the UNSW-NB15 dataset. KNN algorithms with different K values and the Naive Bayes method were compared according to accuracy rates and the results were given in the table. As a result, changes in accuracy rates were observed according to different k neighbor values in the KNN algorithm. Higher accuracy rates than Naive Bayes were achieved in the models created with the KNN algorithm.\",\"PeriodicalId\":114335,\"journal\":{\"name\":\"2022 10th International Symposium on Digital Forensics and Security (ISDFS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Symposium on Digital Forensics and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS55398.2022.9800814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS55398.2022.9800814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Network Anomalies with Machine Learning Methods
The present study, aimed to detect cyber-attacks, and unexpected access requests on devices in the telecommunication networks, enabling the necessary measures to be taken early. With K-Nearest Neighbors (KNN) and Naive Bayes machine learning methods, predicted whether the raw data packets contain cyber-attack according to different properties of these packets using the UNSW-NB15 dataset. KNN algorithms with different K values and the Naive Bayes method were compared according to accuracy rates and the results were given in the table. As a result, changes in accuracy rates were observed according to different k neighbor values in the KNN algorithm. Higher accuracy rates than Naive Bayes were achieved in the models created with the KNN algorithm.